Transforming geoscience education with interactive models for exploring plate tectonics.


From the depths of the seafloor to the top of the tallest mountain range, every landform on Earth has a story to tell that stretches back over geologic time. Earth’s geologic wonders have been shaped over hundreds of millions of years by the movement and interaction of a set of tectonic plates that make up the outer layer of Earth. While scientists can speculate about plate motion, the geodynamics responsible for a wide variety of landforms and events is complex to both teach and learn.

Teaching geoscience poses significant challenges because the processes that shape the Earth occur out of sight over mind-boggling periods of time. We are using Earth’s systems models as a way to help students reason spatially and temporally about how plate movements result in the distribution of various geological phenomena.

Our goal is to transform geoscience teaching and learning by designing geodynamic software and curriculum modules to help students develop causal, model-based, scientific understanding of plate tectonics. We’re moving Earth science education from a “bottom up” approach, which begins with rocks and minerals and moves to earthquakes and volcanoes to a model-based approach beginning with plate movement as the initial “puzzling phenomena,” which explains the formation of a variety of landforms such as locations of mountains, volcanoes, and deep ocean trenches to name a view.


Research on student learning and teacher practice is guided by the following questions:

  • How and to what extent are students able to reason about how plate movements result in the global distribution of geological phenomena?
  • What patterns emerge from students modeling practices with geodynamic models? How do the modeling patterns relate to ways in which students describe and explain plate tectonics and associated geological processes that shape Earth’s landforms?
  • How do students use evidence generated from models in formulating arguments about geological phenomena? How do students frame uncertainty in accepting or refuting evidence from the models?
  • What practices are productive in supporting students’ use of dynamic computer models of complex phenomena? What is the repertoire of practices developed by teachers around the use of modeling that include an explicit focus on uncertainty-infused argumentation?


Pallant, A. (2017). Modeling plate tectonics for learning. @Concord, 21(1), 10-11.


View, launch, and assign activities developed by this project at the STEM Resource Finder.

Project Funder
This material is based upon work supported by the National Science Foundation under Grant No. DRL-1621176. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Principal Investigator
Amy Pallant, Hee-Sun Lee, Scott McDonald
Years Active