
Separating the Signal from the Noise: Promoting Alaskan students’ inquiry with geographically 
relevant seismic data and machine learning techniques 

This three-year medium size project in the PreK-8 strand leverages a research-practice partnership to 
develop Alaskan middle school students’ computer science (CS) and machine learning (ML) skills and 
practices via block-based programming within an online curriculum focused on scientific inquiry of 
real-world seismic waves. 

Importance 
The Earth’s crust is constantly vibrating from natural and human-caused tremors. Situated close to the 
edge of the North American tectonic plate, Alaska experiences thousands of earthquakes annually [1]. 
Here, at this convergent plate boundary, the Pacific Plate subducts under the North American plate. The 
mountains resulting from the collision of plates also produce rock slides and avalanches, which send 
vibrations through the upper portion of Earth’s crust. Furthermore, due to Alaska’s extensive coastline, 
the ebb and flow of tides and the crashing of waves against the land cause further vibrations. Humans, 
too, cause noticeable movement on Earth’s surface. Construction sites, roadway traffic, sporting events, 
and many other activities all cause small vibrations. These vibrations of Earth’s crust, called seismic 
waves, are measured and studied by seismologists using accelerometer sensors. 
New machine learning (ML) techniques have transformed the field of seismology. Machine learning is 
a branch of artificial intelligence (AI) designed to identify patterns and relationships embedded in large 
datasets. In the past, seismologists used a sequence of manual processing steps to monitor seismic 
activity, including hand labeling seismograms to decipher seismic events and their sources. With modern 
computational methods, scientists can now train an ML model to efficiently and accurately process, filter, 
and analyze seismic signals. Seismologists now rely on ML to conduct real-time identification and 
classification of seismic data constantly being collected by thousands of networks seismographs around 
the globe [2]. They then use these data to extract information from seismic waves and gain new insights 
[3]. For instance, was the tremor from a sports event, construction, roadway traffic, or a potentially 
dangerous earthquake? Based on the ability to identify features nearly instantaneously, ML is capable of 
making these distinctions. 
Seismology provides an ideal context in which to engage students in learning Earth science and 
computer science (CS). The Next Generation Science Standards [4] states that students should analyze 
and interpret data on natural hazards to consider their potential impact, mitigate their effects, and use 
scientific evidence to build understanding. Additionally, it is essential for students to learn disciplinary 
core ideas through science practices that authentically reflect the ways in which scientists conduct their 
research [5]. However, authentic geoscience is typically not accessible to students in the way it is 
practiced by seismologists [6], [7] because it is not trivial to translate geoscientists’ resources, methods, 
and tools into materials that are appropriate for engaging students in inquiry-based activities [8]. 
Authentic computational practices used in seismology such as combining hardware and software, 
programming, problem solving, and creating data visualizations need to be simplified, but not distorted, 
to a level appropriate to students. The progression of the field of seismology towards CS- and ML-based 
research methods creates a transformative research opportunity to design and research CS- and 
ML-supported geoscientific inquiry investigations for students.  
Integrating CS and ML into science classes allows all students to gain access to these essential skills 
and practices. In 2018, the Alaska State Board of Education and Early Development identified CS as a 
foundational skill that all students will need for their futures [9]. They recognized that “whether the 
students grow to pursue computer-related careers, CS education…prepares Alaska students for the 21st 
century work force” [9]. Additionally, the State has committed to furthering teacher professional learning 
in CS, including CS preparation for teachers interested in integrating CS in their subject areas [9].  



Project Goals and Objectives 
The Separating the Signal from the Noise project (SeismicML for short) will engage Alaskan middle school 
students in contextualized inquiry investigations with local seismic data to help them understand 
authentic applications of CS and ML in modern science. We will develop a pedagogical model for 
integrating CS and ML practices with investigations central to the work of modern seismologists. To 
accomplish this, this RPP brings together expertise from the Concord Consortium (CC) in technology and 
curriculum development, a geophysicist from the University of Washington (UW) with expertise in 
applying ML to large seismic datasets, a science education researcher and teacher professional 
development provider from Kent State University (KSU), and teachers and administrators from the 
Anchorage School District (ASD) with experience in implementing innovative, technology-focused 
curriculum. We will address the need for computationally integrated science materials that engage 
Alaskan students in an engaging curriculum that meets state CS standards. The project will meet this goal 
through a set of targeted objectives: 
Objective 1: Develop and study prototype software and instructional materials for middle school 
students that integrate CS and ML learning with geoscience content around earthquakes. The 
SeismicML project will create a block-based programming workspace where students use CS and ML 
practices to collect, filter, identify, and classify seismic wave data collected by Raspberry Shake 
seismometers in their classrooms. We will translate an existing scientific-grade ML model that can 
computationally identify a variety of seismic signals from the ubiquitous background vibrations of Earth. 
We will also develop an online, inquiry-based curriculum module that will scaffold students to use the 
ML model to investigate real-world seismic wave data in their local area.  
Objective 2: Understand the novel affordances of integrating local seismic data, geoscience content, 
and authentic CS and ML practices for engaging students in seismic investigations. Students will 
construct, iterate, and interpret block programs and computational visualizations to explain seismic 
phenomena. We will study how students use and refine ML models to make them more accurate to 
real-world seismic events and how they make sense of the computational outputs of the programs they 
create. Our approach will leverage access to vast amounts of seismic data through an extensive 
seismograph network to improve teaching and learning of Earth science by integrating key science 
concepts with computational practices. Through this work, we aim to develop middle school students’ 
scientific inquiry through the deliberate synergistic interweaving of both disciplines and their practices 
through investigations of real-world seismic signals. 
Objective 3: Conduct research on students’ CS and ML learning, science knowledge, CS attitudes, and 
perceived relevance. Through a Design-Based Implementation Research (DBIR) study [10], [11], we will 
investigate the supports necessary to fully engage teachers and students in successfully implementing the 
curriculum module. The project will investigate the benefits of integrating computational practices in 
science classrooms on students’ attitudes, perceived relevance of instruction, and content knowledge. The 
project will contrast student outcomes associated with module use within teachers while diminishing 
confounding variables such as teaching style, personality, and experience. Through the collection of 
student answers to questions embedded in the curriculum, snapshots of block programs, surveys, 
interviews with teachers, and recordings of classroom discourse, the project team will work to investigate 
the jointly developed research questions below. 
RQ1. (Improving understanding through computationally integrated science investigations) How do students 
translate their understanding of seismic waves into an algorithmic model to investigate and classify the 
sources of seismic signals? To what extent does using the computationally integrated seismic curriculum 
build students’ computational practices and geoscience content knowledge?  



RQ2. (Curricular impact on student learning) What are the novel affordances of integrating geographically 
relevant data, geoscientific concepts, and authentic CS and ML practices for engaging middle school 
students in meaningful seismic investigations? Is student engagement with an authentic computationally 
integrated Earth science curriculum associated with improved attitudes, perceived relevance, and science 
learning outcomes? 
RQ3. (Supporting teachers in teaching with integrated CS and science materials) What types of teacher, 
curricular, and computation-related supports are necessary to engage students in computationally 
integrated seismic investigations? In what ways do teachers use their everyday experiences to inform 
their teaching with locally relevant materials? 

Design Principles for the SeismicML Instructional Materials 
SeismicML will apply the following design principles when developing the module.  
Translating authentic computational seismic wave investigations for use in middle school classrooms. 
The NGSS calls for the translation of scientists’ resources and tools to accommodate students’ 
inquiry-based activities. The field of seismology, which studies the propagation of seismic waves through 
the Earth, provides a rich context for authentic CS inquiry activities because the field has increasingly 
relied on computation to conduct research [12]. Using computational methods in seismology is necessary 
due to the huge datasets and dispersed network of connected sensors used in the identification and 
classification of seismic waves. The process of collecting, analyzing, and visualizing data using a 
programming tool comprises several of the CS practices defined by the Alaska Computer Science 
Standards (ACSS) [13]. To make such authentic science practices available to students, scientists’ activities 
should be translated by simplifying scientific terms, reducing unnecessary cognitive load associated with 
tool use, and foregoing tedious syntax or data analysis so that students can focus on the salient and 
critical aspects of the complex inquiry of scientists [8], [14]. ML has been postulated as difficult to teach at 
the middle school level because students have trouble understanding abstract concepts, especially in 
quick, isolated interventions of only one or two class periods [15], [16]. This project will provide a robust 
design and implementation of a week-long curriculum that will allow us to understand how students 
learn to use CS and ML practices in the service of carrying out science investigations [17].  
Contextualizing computational practices in the context of seismology. The SeismicML project materials 
are aligned with the ACSS as well ML competencies derived from the AI Literacy Standards [18] see 
Description of SeismicML Instructional Materials [18]. These ML competencies include understanding 
humans’ role in AI, how computers learn from data, the importance of critically interpreting data, and 
how sensors play a role in collecting large datasets and interfacing with computers (Long & Magerko, 
2020). We recognize that each scientific field uses these practices in a different way and that a field’s 
unique methods and practices are “learnable and valued dimensions of disciplinary work, both tacit and 
explicit, that people develop over time in a specific place” [19, p. 1094]. In other words, the conditions for 
use of the practices arise directly out of the context of activities in each field. For example, seismologists 
filter and visualize seismic wave data from past events in order to train and refine ML models and then 
investigate real-time incoming data for specific seismic phenomena. None of these individual practices is 
exclusive to seismology. But CS and ML manifest themselves uniquely during these scientific endeavors 
[20] and a combination of these practices has proven valuable for conducting research and investigating 
the variety of natural and human-caused seismic signals [21]. By actively engaging students in 
discipline-specific knowledge, tools, and practices, they can acquire a rich understanding of the problem 
context as well as of the knowledge, tools, and practices themselves [22].  
The need for a locally relevant CS curriculum. Theoretical and empirical research suggests that 
personally relevant instruction results in higher engagement and greater likelihood of successful 
knowledge revision [23], [24]. It has also been suggested that inclusion of real-world problems 



emphasizes the interdisciplinary nature of the sciences and their relevance to students [25]. Relevance can 
be considered to consist of three different dimensions: individual, societal, and vocational [26]. For 
science teaching, this means that relevant education must contribute to learners’ intellectual skill 
development, promote learner competency for current and future societal participation, and address 
learners’ vocational awareness and understanding of career chances. Each of the three dimensions 
encompasses a spectrum of present and future aspects [26]. In the individual dimension, the SeismicML 
project will connect students’ learning of seismic waves to their lived experiences, such as the 2018 
Anchorage earthquake that shut down schools for a week [27]. From the vocational dimension, the 
project will also provide information and background for future employment by exposing students to 
and improving their understanding of authentic science and computational practices. From the societal 
dimension, the project will develop students’ ability to make connections between this project’s 
classroom-based seismic curriculum and their lives outside of school. By contextualizing the inquiry into 
local seismic phenomena, we can situate the context to the community in which the science is being 
learned. These internal and external justifications provide many entry points for students to feel 
relevance, and thus motivation, throughout the SeismicML curriculum.  

Description of SeismicML Instructional Materials 
Computer science is the study of how computer hardware, software, and algorithms can most effectively 
be applied to solve problems [28]. Educational researchers have identified several broad CS categories 
consisting of a core set of computational skills and practices essential to and inherent in authentic CS 
practices, including algorithms and programming, data and analysis, and computing systems (ACSS, 
2019). In recent years, authentic CS practices have increasingly included innovative methods, such as ML 
[29]. Machine learning is a subset of AI (itself is a branch of CS) that focuses on using data and algorithms 
to enable computers to imitate the way that humans learn. Specific advantages of ML include easy 
identification of trends and patterns, continuous improvement as the algorithms gain experience, and the 
ability to adapt an ML algorithm to other computational problems [30]. To help define the ML practices 
and knowledge in the SeismicML curriculum, the project will use ML competencies derived from the AI 
Literacy Standards [18]. The project will integrate these CS and ML standards with science learning goals, 
crosscutting concepts, and practices defined in the Next Generation Science Standards (NGSS). These 
standards will be used to guide curriculum and tool design, teacher support materials, and to prepare 
teachers for implementation.  
ACSS and ML Competencies. The ACSS Data & Analysis standards (7.DA.S.01, 8.DA.CVT.01, 
8.DA.IM.01) focuses on developing and implementing computational tools to collect, transform, and 
create multiple visualizations of data, as well as refining computational models based on the data they 
have generated. This aligns with ML competency 12, which recognizes that computers often learn from 
data, especially ML models. The ACSS Algorithms & Programming standards (8.AP.A.01, 8.AP.PD.03) 
focus on using flow diagrams and pseudocode to solve complex problems and systematically testing and 
refining programs using a range of test cases. This aligns with ML competency 9, understanding the steps 
involved in ML and the practices that each step entails, as well as ML competency 13, which focuses on 
critically interpreting data to describe how outputs of an initial dataset can affect the results and 
refinement of an algorithm or program. The ACSS Computer Systems standards (2-IC-21, 2-IC-22), which 
addresses the need for students to design and refine projects that combine hardware and software to 
collect and exchange data, aligns with ML competency 15, which recognizes the importance of 
understanding what sensors are and recognizing that computers perceive the world using sensors.  
NGSS Standards. The SeismicML project addresses two of the disciplinary core ideas of the NGSS 
related to Earth and Space Science: ESS2: Earth’s Systems (ESS2.B: Plate Tectonics and Large-Scale System 
Interactions) and ESS3: Earth and Human Activity (ESS3.B: Natural Hazards and ESS3.C: Human Impacts 



on Earth Systems). In addition, the project addresses three science practices: planning and carrying out 
investigations, analyzing and interpreting data, and using mathematics and computational thinking. The project 
materials also focus on the crosscutting concept of patterns.  
The Dataflow programming interface 
This project will build on the previously developed and NSF-funded block programming interface called 
Dataflow [31], which has the ability to connect to live hardware sensors, such as seismographs. Using 
Dataflow, students can write programs that import, process, and output data by connecting blocks (See 
Figure 1). Students will import data from seismic sensors, filter and transform the data, run data through 
an ML model trained to identify 
and classify seismic waveforms, 
and create multiple visual 
representations of the results 
(Figure 1). Using block-based 
programming allows learners to 
concentrate on the underlying 
programming concepts by 
providing visual cues that 
guide learners towards creating 
useful programs [32]. With the 
SeismicML version of Dataflow, 
ASD middles schoolers with 
little to no previous coding 
experience can focus on using 
this computational tool to 
carry out scientific inquiry 
without needing to learn 
complex syntax [33], [34]. To 
input seismic data into 
Dataflow, the project will use 
Raspberry Shake (RS) 3D seismographs. These sensors can be installed on the classroom floor or on a 
table and immediately start recording seismic signals, including all magnitudes of local seismicity as well 
as larger earthquakes from across the globe. In addition, teachers and students will have access to RS’s 
full seismic database of over 2,000 sensors throughout the world, including several that are installed 
throughout Anchorage. This high-quality and accurate seismic data will serve as the basis for students’ 
investigations of seismicity.  
Separating the Signal from the Noise Curriculum 
The project will develop a one-week curriculum module that features computationally integrated, 
inquiry-based activities in which middle school students will explore natural and human-caused seismic 
events. The overall goal of this module is to build students’ scientific and computational knowledge 
and practices to the point where they can build programs that leverage an ML model to query and 
analyze real-world seismic data to answer their own questions. Throughout the module, students will 
engage in authentic computational practices used in seismology such as combining hardware and 
software, programming, problem solving, and creating data visualizations. The module will gradually 
introduce new science content and new computational methods, alternating between the two to help 
students build the knowledge and skills necessary to conduct investigations. By the end of the module, 
students will understand how science inquiry and computation support the same goal. A short 
description of the five activities is described below. Each activity includes a framing question, and the 



description highlights how CS and science concepts are interwoven. This is a draft outline that will evolve 
through the co-design conversations of the RPP. 
Activity 1: How is seismic data collected and what does it look like to a computer? Students consider 
what causes seismic waves to travel through Earth and look at seismic waveform data collected by RS 
seismometers in their classrooms. Beginning with basic programming blocks, students will use Dataflow 
to create visualizations of this seismic wave data, and will learn how to interpret the time series data that 
represents ground motion. Students will speculate about the seismic events captured in these waves and 
consider the volume of data produced in 24 hours, in a week, and over a month by a single seismometer 
and the challenges this volume might have for individuals to explore this seismic data.  
Activity 2: What events produce waveform data and how can you use the wave features to differentiate 
seismic events? Interpreting seismic waves requires processing the data to identify events, to classify the 
events, and to differentiate sources between human and natural events. In order to identify events and 
classify them, students in this activity will use build programs in Dataflow to visualize one seismic event 
at a time and compare the seismic signals of these events. Students will learn about the key attributes of a 
seismic wave, including the amplitude, frequency, wavelength, and duration. Students begin to 
understand how sources of seismic waves (i.e., earthquakes, landslides, construction noises, etc.) produce 
distinct seismic signals that can be used in classification and learn how a seismic signal can be used to 
classify the source of that signal. Seismic data always includes background noise or interferences with 
many signals and can sometimes mask the signal of interest. Students consider ways in which human 
labeled data might not be able to keep up with the volume of data produced by seismometers and how 
frustrating it might be to miss the signal if the noise is overwhelming.  
Activity 3: What is the value of using an ML model to identify and classify seismic waves? Mimicking 
the sequence of processing and analyzing data developed by scientists, students will develop algorithms 
to automate data tasks using ML. Students will build several programs for differentiating between event 
types, and for processing large amounts of data to look for scarce events such as large earthquakes. 
Students will learn how scientists develop methods for identifying signals from the noise and how 
scientists build databases of labeled seismic data that contain representations of many possible seismic 
signals in order to train ML models. Students will create Dataflow programs to add trained ML models to 
their programs and add additional filter blocks to understand how to modify ML models to adjust them 
for specific analyses. Students will then import seismic data from multiple RS seismometers and reason 
about the advantages of ML models over human labeled models when dealing with seismic time series 
data from many seismometers.  
Activity 4: What seismic events are recorded in the waveform signals local to the school? To reinforce 
the ML analytic approach, students will characterize the local waveform signals collected by the RS 
seismometer in their school. Each class will develop algorithms to process the seismic data and develop a 
data visualization of events registered on their classroom RS. Students will develop programs to 
investigate and identify the different sources of seismic waves and the frequency of each type of event. 
Students will explore how to filter data for specific dates and times, magnitudes of events, and types of 
events. Students will learn how to analyze the outputs of the ML process, and to communicate the results 
of the investigations. Students will also combine data from RS sensors, apply multiple filters, and run the 
transformed data through the ML model in order to identify how the same events can be registered by 
multiple sensors in their local area.  
Activity 5: What is the likelihood that [an earthquake] will occur in Anchorage? In this final activity, 
students will be scaffolded to conduct a self-directed ML-based inquiry investigation with the seismic 
data collected from RS sensors around Anchorage. Students will be required to use Dataflow to build 
programs, conduct analysis of the data using ML, and communicate the results of their research to the 



class. Student explorations might include: “Has an earthquake occurred in Anchorage on my birthday in 
the last 10 years?” or “How many Raspberry Shakes recorded the earthquake that shut down our school 
in 2018?” This activity serves as a summative assessment to understand students’ ability to create 
Dataflow programs to carry out scientific inquiry. 
An integrated learning task example 
Olivia and Anik, working in Activity 5, are trying to figure out if there were any earthquakes near their houses in 
the past year. Since they both live in northern Anchorage, they filter the data for the Raspberry Shake sensor closest 
to their homes. In the satellite view, they see that the sensor is located at a shipping dock next to an inlet with a main 
road and train tracks running alongside it. Olivia sets up an “input” block that retrieves data from Raspberry Shake 
3 (purple block, Figure 1). She knows that if she connects it to a “transform” block, she can filter the data for the 
specific date and time (green block). Olivia and Anik set a time filter for one year back from the present. They 
connect a second “transform” block to filter the data for any signal greater than magnitude 1.5. Excited to test the 
ML model block to quickly analyze the entire years’ worth of data, they connect the “transform” block to the “ML 
model” block. They wait a moment as the ML model runs the filtered data and produces a bar graph with hundreds 
of counts of signals from cars and trains in the past year, but only one earthquake. Intrigued, Anik zooms in on the 
time around the earthquake. He adjusts the date/time “transform” block to focus on the three minutes around the 
time of the earthquake, then runs the program again. Once the code completes the analysis, Olivia and Anik notice 
that this big earthquake created a seismic wave larger than any of the other signals around it. They are eager to 
describe their findings to their class and their families to find out if others remember the shaking that this earthquake 
would have caused! 

Research Plan 
To ensure the effectiveness of the SeismicML project materials for the Anchorage School District 

(ASD) at the center of this RPP, we employ a mixed methods Design-Based Implementation Research 
(DBIR) approach [11], [35]. DBIR requires collaboration across researchers and communities to develop 
“evidence-based improvements” [11] to classroom innovation. The RPP at the heart of this project is 
composed of teachers, a district science leader, seismologists, education researchers, and technology and 
curriculum developers, with all parties primed to contribute in meaningful and productive ways. In 
response to state legislation requiring additional CS instruction at all grades, ASD has been looking for 
specific ways to incorporate CS units into the K-8 science curriculum. At the same time, education and 
science researchers on the SeismicML project seek to investigate how to translate CS and ML practices for 
engaging students in authentic science investigations. Together, this well-defined RPP will research 
solutions to address the need for CS in ASD K-12 curricula, leading to the joint development and 
execution of this proposal. In this way, the RPP is committed to co-designing mutually beneficial 
materials with distributed expertise [36], [37] and DBIR allows us to conduct research that is centered on 
the needs of the community. The intent of our DBIR process is to shape the curriculum to maximize its 
value for the participating Alaskan teachers and students as well as the education research community. 
Methodological framework. We will employ the lens of Consequential Learning (CL) [38] to understand 
and evaluate the project across cycles of design, implementation, and analysis. Consequential learning 
attends to the flexible and wide-ranging aspects of the temporal and spatial dimensions of learning, 
through socially negotiated interactions involving people, technologies, and tools [38]. Our work with CL 
aims to engage students in authentic disciplinary practices, as work is “consequential” when it addresses 
authentic problems (Davis et al., 2024). Through these authentic practices, we will create pathways to 
extend learning in personally relevant directions [38]. Creating trajectories that support CL involves 
leveraging students’ funds of knowledge [39]; therefore, we will draw on learners’ background 
knowledge and experience of earthquakes in the design of project materials. Using a CL lens guides our 



data collection and analysis by focusing on local, real-world contexts and connections to students’ and 
communities’ experiences.  

CL also emphasizes how concepts are not solely mental constructs but are distributed across 
people and technologies within specific practices. This perspective implies that factors, including 
students’ attitudes, are integral to how individuals interact with and contribute to conceptual practices. 
Therefore, the project’s analysis will also be attuned to students’ attitudes toward using computational 
methods to build knowledge, aid in their scientific investigation, and add value to the inquiry process. 
Furthermore, CL recognizes that disruptions to representational infrastructures (e.g., changes in tools and 
practices) often create opportunities for learning, as changes in tools and practices are bound up in the 
evolving contexts of their use. These disruptive events often allow individuals to rethink and renegotiate 
practices, leading to innovation and adaptation [40].  

Through the introduction of the Dataflow programming interface and associated curriculum into 
a science classroom, we will be able to trace how students use and adapt their conceptual understandings 
throughout the module. Similar to recent Knowledge Integration (KI)-based research [41], we employ 
epistemic network analysis (ENA) to investigate student knowledge structures or networks. ENA 
involves qualitative coding that is then analyzed quantitatively (noting the frequency of codes that 
co-occur, see Figure 3) with a focus on the creation of a visualization of the ways and extent of 
connections (see Figure 4) as well as network analytics (e.g., network density, cluster analysis).  

Our CL-informed ENA is distinguished from a KI approach to ENA by focusing on conceptual 
change from a sociocultural perspective. This perspective guides our choice to investigate student 
learning gains in part using ENA of classroom discourse. This will offer evidence of the module’s support 
of students’ development of substantial connections among science content knowledge, CS and ML 
practices, and locally relevant seismic phenomena. These connections offer an alternative way to consider 
students’ understanding of a topic and complement traditional knowledge assessments such as the 
embedded and summative assessments in the module. Specifically, a collective ENA will focus attention 
on a class as a whole, which will offer a wider lens on a class’s understanding and framing of these key 
concepts and aligns with the sociocultural perspective of CL. ENA leverages and supports the strengths 
of this project in that all aspects of the science content, CS and ML practices, and localization can be 
assessed and considered together, including how they support each other in students’ collective 
knowledge structures, or network models. See Data Collection and Analysis section for more information. 

The DBIR Work Plan 
Design Cycle 1: October 2025 to September 2026 
Curriculum module development. Informed by the research literature, NGSS, and ACSS/ML 
frameworks, the project staff including partner teachers will develop performance expectations for the 
project’s module for content understanding, data and model sensemaking, and development of CS and 
ML. A potential performance expectation that integrates NGSS, Alaskan CS standards, and ML 
competencies might include: Using computational tools and models to collect and transform seismic data, 
students will construct an explanation based on evidence for patterns in human-caused seismic waves, such as car 
noise. Such performance expectations will emerge from and evolve through iterative co-design with ASD 
partners. From October to May, we will regularly meet with teachers in monthly meetings to co-design 
early drafts of the curriculum module, discuss ways to contextualize the module within their students’ 
lives, and ensure the articulation of how computer programming and computer science practices are 
essential skills. From June through September, the online module and assessment instruments will be 
developed in the CC authoring system. 

Develop and test the Dataflow programming interface with scientists, teachers, and students. 
Curriculum and software developers at CC in partnership with the seismologist at UW will translate ML 



models used by scientists, integrate training sets, and develop unique Dataflow blocks for student use. 
Through an iterative process the prototype will be tested through think-alouds in the classrooms of the 
three partner teachers. These sessions will occur while development on the Dataflow programming 
interface is ongoing to allow for quick iteration of key features and testing of bugs in the software. The 
partner teachers will implement the prototype of the programming environment and early versions of the 
curriculum in order to gauge students’ reactions to each. The goal is to focus on the user experience of 
Dataflow, assessing the difficulty of coupling real-time data input from RS sensors with programming 
and ML modeling, and identifying programming support features critical for students to effectively use 
the tool in inquiry investigations. 
Hold an early summer co-design summit. During the summer, the full RPP team including teachers, 
curriculum developers, scientists, and researchers will attend a three-day summer co-design summit. 
Major activities include: (1) testing and feedback of the Dataflow interface, (2) finalizing the curriculum 
module, (3) determining implementation strategies for teaching with online, computationally integrated 
materials, (4) beginning the curriculum module’s Teacher Edition, which will contain teaching tips, 
discussion points, and exemplar answers, and (5) planning the logistics of the implementations.  
Design Cycle 2: October 2026 to September 2027 
Pilot test module and instruments. Beginning in October 2026, version one of the module will be 
implemented in the three pilot teachers’ classrooms as part of their typical nine-week ASD middle school 
“Earth and Geologic Changes” science unit. This unit includes subunits of “Plate tectonics” and “Earth’s 
changing surface, volcanoes, and earthquakes.” The classrooms will be observed by the science 
coordinator of ASD who is on the project team and has multiple years of experience using Raspberry 
Shakes in classrooms with students. Classroom observations will focus on the support students need to 
carry out computationally integrated Earth science inquiry investigations with real-world seismic data 
and student experiences with Dataflow. We will collect audio recordings of classroom discourse 
throughout the implementation of the module in the classrooms of all three partner teachers for ENA 
analysis of the pilot implementation. We will also conduct post-implementation interviews with the three 
pilot teachers to explore their experience in (1) teaching with computationally integrated science content, 
(2) the differences between this module and their typical instruction, and (3) teaching a locally 
contextualized curriculum.  
Conduct ENA analysis. Using the recordings of classroom discourse from the three classrooms of the 
pilot implementation, we will conduct an ENA analysis that focuses on the change in students’ 
connections between three major aspects of the module that we hypothesize will be impacted by the 
SeismicML curriculum: science content knowledge, CS and ML practices, and locally relevant 
phenomena. This ENA analysis will focus on critical moments of classroom discourse from early on and 
at the end of the pilot implementation in each classroom. This will allow the project team to understand 
the efficacy of the module for enabling students to make connections between these three aspects and will 
serve as an essential analysis to inform module revisions. 
Revise the module and instruments. The SeismicML team, including participating teachers, will analyze 
students’ responses to embedded questions in the curriculum module, students’ Dataflow programs in 
the module (all captured automatically online), and a student attitudes survey. The SeismicML team will 
collaborate to revise the module and the Dataflow workspace. We will also continue co-designing the 
Teacher Edition that will accompany the materials. Through bi-monthly Zoom meetings with teachers, 
the team will ensure that the curriculum and teacher materials are centered around teacher and student 
needs.  

Provide a professional development workshop. In the summer, the three pilot teachers, supported by 
the full project team, will run a professional development workshop for three additional ASD teachers 



who will implement the module in Design Cycle 3. The workshop will focus on (1) science content and 
practices, (2) CS and ML knowledge and practices, and (3) how to implement the online module while 
helping middle school science teachers further contextualize the Dataflow programming, Raspberry 
Shake data, and overall content to students’ everyday lives.  
Design Cycle 3: October 2027 to September 2028 
Field test module and instruments in additional middle schools. During the school year, the three 
teachers who co-designed the curriculum and the three teachers trained in the Design Cycle 2 
professional development will administer pre-surveys (described below) to their students, facilitate 
students’ use of version two of the Separating the Signal from the Noise curriculum, and administer the 
student post-surveys. A classroom observer from the project team will be on site throughout the 
implementation to make observations and collect audio recordings of classroom discourse for the 
purpose of robust ENA. Finally, we will conduct post-implementation interviews with all six teachers in 
the same way as Design Cycle 2. 
Conduct ENA analysis. Researchers and teachers will co-identify critical instances of classroom 
discourse, one early on and one towards the end of the module. This will illustrate any changes over the 
course of the module in students’ cognitive connections among science content knowledge, CS practices, 
and locally relevant phenomena in each of the classrooms. We will compare classroom discourse 
associated with versions one and two of the curriculum for the initial three pilot teachers and compare 
the discourse associated with curriculum version two in classes by the pilot teachers to the three new 
teacher implementers. This comparison will illuminate the affordances of more experienced teaching in 
terms of CS and ML and a revised curriculum.  

 
Figure 2 The SeismicML timeline highlighting the RPP members’ activities. The dark color represents the lead for 
activity and the lighter color indicates supporting the activity. When all are dark, the work is evenly distributed 
between partners.  

Data Collection and Analysis 
We will utilize several data sources to explore the extent to which the module improves students’ science 
content knowledge and their CS and ML practices as well as the consequentiality of connecting the 
learning materials to students’ local community. Classroom observations, recordings of classroom 
discourse, student attitudes surveys, and teachers’ field notes throughout all aspects of their participation 
in co-designing, revising, and implementing the materials will be leveraged to answer the research 
questions.  
Teacher Interviews. We will inductively analyze teacher post-implementation interviews to inform 
iterative development of the module and the teacher support materials.  
Classroom Discourse and Epistemic Network Analysis. Given the dual goals of developing a 
meaningful CS and ML Earth science curriculum module and focusing on local relevance for engaging 



students in STEM, we will use network analysis methods of classroom discourse [42], [43] as they support 
nuanced investigation of Consequential Learning. The team will investigate students’ CL, operationalized 
as connections among science content knowledge, CS and ML practices, and localization. Network 
models illustrate knowledge and connectedness at one point in time [44]. Models can be constructed for 
multiple time points to assess changes over time in students’ knowledge networks. A collection of these 
models of different time points can show changes in 
students’ knowledge that can be missed by 
traditional pre- and post-tests [45]. Because we aim to 
promote students’ CL through the module as 
analyzed through epistemic network analysis, we 
will collect audio recordings of classroom 
discourse throughout the implementations in 
Design Cycle 2 and in Year 3. The team will 
conduct emergent coding within three core areas of 
science content knowledge, CS and ML practices, 
and locally relevant earthquake phenomena. 
These codes can be organized under broader 
categories; the number of times any two 
categories occur within the same open-ended response (called co-occurrences) will be counted and 
network models will be created [43], [46] using ENA (See Figure 3).  

To investigate how students’ collective class networks change over the implementation, we will 
construct models using the software UCINET for critical time points (early and late in the curriculum) 
co-identified with teachers during module implementation. The RPP team, including the teachers who 
co-designed the module, will qualitatively and quantitatively analyze and compare the network models 
for different classes. Qualitatively, we will describe the types of connections and relative strength of the 
connections (associations). Quantitatively, we 
will determine how connected aspects of the 
models are by calculating association levels, 
weighted averages of co-occurrences using 
the agglomerative clustering method [47], an 
accepted network analysis method [48], [49] 
recommended by [50] in their review of ENA 
in science education. Some aspects of each 
model will be more connected to some 
aspects than others, representing a “cluster.” 
The number of clusters will be counted and 
their composition within a class’s model 
evaluated to consider why those aspects are 
connected strongly [45]. A model with fewer 
clusters and higher association levels is 
considered to represent a more connected 
framework and a more cohesive 
conceptualization (See Figure 4).  

Additional network analysis metrics 
such as network density will be calculated as 
well [50]. In Design Cycle 2 ENA analysis, 
teachers will review and provide feedback on the network models to inform modifications to the module 



and teacher support materials, as needed to further develop CL. In Design Cycle 3, the networks for 
students engaging in the module will be compared between Y2 and Y3 classrooms. 
Surveys. Quantitative measures include two surveys that students will complete prior to and after using 
the module: a Computer Attitudes Survey and a Relevance Scale. To measure the effects of locally 
relevant computing learning experience on the change of middle school students’ computer attitudes, we 
will analyze students’ responses to a Computer Attitudes Survey [51]; α =0.736) that measures (1) 
students’ interest in studying computers, (2) students’ attitudes towards computers, and (3) students’ 
understanding of computer concepts. The Computer Attitudes Survey will be administered before and 
after students engage with the module. Our focus is on how individual students’ participation in 
computational practices and their dispositions towards the practices changes over the course of the 
implementation, especially how it relates to the disruptive representational infrastructure (i.e., the tools, 
technologies, and materials developed in this project) [38]. 

To assess students’ perceptions of the relevance of the curriculum, we will use the [52] Relevance 
Scale to evaluate how students see personal, contextual, and future relevance for their classroom content. 
The unidimensional scale consists of 12 Likert-style items with attained internal consistencies of α ≥ 0.90.  

Analysis of these data will engage a within-person repeated measures MANOVA (multivariate 
analysis of variance) to evaluate the extent to which students’ scores of content knowledge and 
educational relevance within science change over the course of the implementation. As warranted, 
standard error estimates will be adjusted using a sandwich estimator to accommodate nested data. This 
approach accounts for potential family-wise error attributable to the use of multiple measures completed 
by each participant and can detect time point by time point and aggregate effects over time, as well as 
avoiding potentially inflated Type I error rates. In the field test that is part of Design Cycle 3 we will 
employ a hierarchical linear model to account for nesting of students within schools and permit 
estimation of potential differences as a function of school location and population.  
Module Data Collection and Analysis. To explore student learning and engagement, embedded prompts 
in the online module will elicit students’ thinking using (1) multiple-choice items, (2) written descriptions 
and explanations, and (3) Dataflow programming. Students’ responses to embedded assessments will be 
collected automatically by the server that hosts the online module and analyzed to investigate the extent 
to which students learn geoscientific and computational concepts. Following the pilot implementation, 
we will look at all student responses to embedded assessments items to help guide revisions. We will use 
analytic induction methodology [53], [54] to deliberately and cyclically code written descriptions and 
explanations and to investigate individual student and class perceptions and attitudes, with specific 
attention to the role of local, real-world connections emphasized in our CL lens. This approach will 
identify meaningful seismic data investigation activities situated within and across classes of students, 
interrogating the interpretations of those activities, and then returning to the data for possible 
disconfirming evidence. Following the field test implementation, embedded assessments will be analyzed 
in relationship to ENA analysis and survey results. Together, these will investigate individual and class 
learning outcomes to iteratively improve the module.  
​ Dataflow snapshots. To understand the affordances of students’ use of CS and ML to carry out 
scientific investigations, we will collect students’ programs at several points throughout the module. 
Informed by the relevant CS practices of the ACSS and the ML competencies identified in the AI Literacy 
Framework [18], instances of computational practices afforded by Dataflow will be tagged. The practices 
of interest include students’ knowledge and skill in combining hardware and software, programming, 
problem solving, and creating data visualizations. Each students’ Dataflow programs will be coded by a 
researcher using a rubric to identify these computational practices. In these analyses, we will focus on 
students’ ability to (1) translate written instructions into block-based programs, (2) use combinations of 



filters and sensors to manipulate large seismic data sets, (3) use the ML model to conduct science inquiry, 
and (4) create data visualizations to use as evidence in answering scientific questions.  
​ Summative assessment activity. The fifth activity of the module will serve as a summative 
assessment of students’ ability to carry out computationally integrated inquiry investigations. We will use 
their responses and programs to assess students’ ability to: 1) conceive a locally relevant scientific 
question that can be answered through computational analysis, 2) devise a method that leverages ML to 
answer the question and their ability to translate that methodology into a program, 3) make sense of the 
data produced by the program, and 4) critically interpret the outputs in the context of their initial 
question.  

Results from Prior NSF Support 
Integrating Transdisciplinary and Computational Approaches in the Earth Science Curriculum Using 
Data Visualizations, Scientific Argumentation, and Exploration of Geohazards (GeoCode). (PI: Pallant; 
Co PIs: Connor, Charlevoix, Lee, Paessel; Researcher: Lore; DRL-1841928; $1,978,274; 8/2016-9/2023). 
Intellectual merit: The project designed innovative technology-based opportunities to enrich both science 
learning and exposure to block-based programming and computational thinking through real-world 
authentic computational geoscience research contexts. The project advanced the field’s understanding of 
how to support students’ creation of computational visualizations and analysis of real-world data in 
order to improve their understanding of geohazards. Broader impacts: The project equipped students 
with computational and problem-solving skills and greater knowledge of how science research can 
inform society about hazards and risks. By integrating computing into Earth science classrooms, the 
project brought computational thinking to a different audience than traditional computer science classes. 
In the course of the GeoCode project, over 100 teachers in 14 states have implemented both modules with 
over 3,100 students using the seismic module and over 4,800 students using the tephra module. The 
seismic module served as the basis for an ongoing ITEST grant (DRL-2241021), designed to engage 
diverse students in California in locally relevant seismic investigations. Publications: Three scientific 
articles [55], [56], [57]; three educational research papers [14], [58], [59]; three newsletter articles [60], [61], 
[62]; five conference presentations; and one doctoral dissertation.  
Collaborative Research: Frameworks: Seismic Computational Platform for Empowering Discovery 
(SCOPED). (PI: Denolle; OAC-2103701; $660,591; 9/2021-8/2025). Intellectual merit: The SCOPED project 
has developed a hybrid cyberinfrastructure to unify model-driven and data-driven discovery through 
Cloud and HPC computing, and development and containerization of state-of-the-art open-source 
software scalable to large data volume and computation. Broader impacts: The project fosters 
collaboration among 5 institutions, 10 early career researchers, the development of teaching materials 
training workshops, and the broadening of the platform to the community. Seismological discovery at 
that scale provides cross-disciplinary inputs to geodynamics, hydrology, geodesy, and natural hazards. 
Denolle is also Co-PI on Machine Learning Training and Curriculum Development for Earth Science 
Studies (NSF CyberTraining Grant #2117834; $995,817, 9/2021– 8/2024). Intellectual merit. This project 
developed the GeoScience Machine Learning Resources and Training (GeoSMART) framework to build a 
foundation in open-source scientific ecosystems and general ML theory, toolkits, and deployment on 
Cloud computing platforms while developing an open-curriculum for undergraduate graduate-level 
courses. Broader impacts; The project provided training in open-source ML toolkits and data science 
skills, trained early career scientists during workshops, and taught over 100 students in class at UW. 
Publications: [63]. 
Collaborative Research: Origin of Large Brains of Cetaceans (Co-PI: Mulvey; 214256; $51,497; 
09/2022-8/2025). Intellectual merit: This project integrates geoscience and life science to investigate 
relative brain size, high frequency hearing, and petrosal bones of Eocene cetaceans using CT scans and 



brain size, hearing, and number of brain neurons of modern day cetaceans. Cetacean EQ increased at a 
rapid rate in the Eocene, at least more rapid than at any other time during cetacean evolution. This 
increase in brain size predated the origin of high-frequency hearing. Broader impacts: The project 
promoted collaboration of high school students from Ohio and Alaska, and incorporated Ohio students 
as interns in the grant’s research group. Educational research on high school student interns in the 
research group provides guidance for how to meaningfully integrate high schoolers into a research group 
in ways that support meaningful engagement in authentic science as well as research group outcomes. 
Publications: [64], [65], [66], [67], [68], [69]. 

Partners and Responsibilities 
Christopher Lore will serve as Principal Investigator. He will direct the development of the modules and 
curricular materials and be responsible for the overall coordination and budgeting of the project. 
Amy Pallant (Co-PI) will guide the development of the curriculum module and teacher support 
materials, as well as advise on all aspects of the project.  
Bridget Mulvey, Ph.D. (Co-PI) will lead the education research, especially research on classroom 
discourse (using ENA), teacher interviews, and qualitative artifacts collected within the module. She will 
manage the research plan, guide the data collection and analysis, and coordinate publication efforts. 
Marine Denolle, Ph.D. (Co-PI) will provide scientific expertise, share code and the ML model developed 
for visualizations, and advise on the seismological and computational aspects of the project. 
Jennifer Pickering, Ph.D., the ASD science coordinator, will organize the ASD teachers, aid in the 
implementation of the modules, help conduct the co-design and professional development workshops, 
and leverage her expertise in working with Raspberry Shakes to teach students about seismic waves.  
The SeismicML RPP includes three middle school teachers. Brian Gehring is a science teacher at Steller 
Secondary School in the Anchorage School District. Madison Berman is a science teacher at Steller 
Secondary School in the Anchorage School District. Chelsea Fullman is a science teacher at Clark Middle 
School in the Anchorage School District. Each of these ASD teachers will provide real-world practical 
insight into classroom challenges with the materials and field test the SeismicML materials. They will 
leverage their weekly Professional Learning Committee professional development time to meet with RPP 
partners and ensure the materials development meets the district’s desired outcomes. The ASD team 
members will focus on iterative co-design, testing, and improvement of the SeismicML materials.  

Evaluation 
Dr. Colby Tofel-Grehl, principal consultant for Empirical Basis, LLC, will conduct the external evaluation, 
which will be formative in design, with annual summative reporting. Her scholarship interrogates the 
structures, systems, and practices in STEM learning environments, with particular expertise in 
developing and sustaining research-practice partnerships. The evaluation will rigorously monitor 
program activities from an external perspective, commenting on challenges, interacting with all RPP 
partners and stakeholders, and helping connect iterative and ongoing research findings with project 
goals. Dr. Tofel-Grehl will write annual reports and a final summative report, which will be included in 
annual reports to NSF. The evaluation will include three components: 
Efficacy and alignment with the RPP’s goals and objectives. Evaluation will closely follow each project 
phase and advise on design and direction through regular video conferences and appropriate face-to-face 
meetings with a focus on: (a) adherence to plan (timeline, recruitment, curriculum and technology 
development); (b) implementation challenges (PD, fit of locally relevant curriculum, and integration of CS 
and ML practices with Earth science content), and (c) how the research effort informs RPP goals. 
Evaluation of the project will draw from Henrick and colleagues’ “Indicators of research-practice 
partnership health and effectiveness: Updating the five dimensions framework” [70] with particular focus 



on Dimensions 2 (Engage in research or inquiry to address local needs) and 4 (Engage with the broader field to 
improve educational practices, systems, and inquiry). Questions include: To what extent is the RPP 
performing according to plan? What are the barriers in each phase? What are the challenges inherent in 
integrating CS and ML practices with Earth science content in middle schools? To what extent is seismic 
phenomena a relevant topic to teachers and students in Anchorage? What unique value do the 
computationally integrated materials offer? 
Alignment with research design. Evaluation will document how the research activities and research plan 
capture evolving outcomes and necessary modifications to meet the project goals. Dr. Tofel-Grehl will 
provide independent and unbiased perspectives on research findings, including collection of student and 
teacher surveys where they can provide feedback about the Dataflow programming interface and its 
perceived impacts on their learning. Open-ended items will invite suggestions for ways to improve the 
CS and ML integration. Questions include: To what extent are the research questions being answered? 
What is the value of these questions to RPP partners, teachers, students, and the field? What additional 
data are not being collected, and why? What factors connect Earth science understanding with CS and 
ML practices? What teacher and student support is critical for learning? 
Broader Outcomes. In Year 3, Dr. Tofel-Grehl will investigate the potential for the replicability of the 
pedagogical model designed and conducted in the SeismicML project. This review will aim to understand 
how easily the materials, including Earth Science content, Dataflow interface, and teacher support 
materials might be replicated elsewhere without the benefit of a fully supported RPP.  

Dissemination 
The Dataflow programming interface, module, surveys, and teacher support materials will be licensed 
under open-source code and open content licenses and will be freely distributed to teachers, curriculum 
designers, and researchers on CC’s STEM Resource Finder. The release of the materials will be 
accompanied by announcements and blog posts to communities of interest – both Alaskan schools and 
schools across the country. All partners will promote project materials and research findings through 
presentations and workshops at conferences (e.g., National Science Teaching Association, National 
Association of Research in Science Teaching, and International Society of the Learning Sciences) and 
through articles published in peer-reviewed journals in science education (Journal of Research in Science 
Teaching, International Journal of Science Education, Science Education, and Journal of Geoscience Education), 
learning sciences (Journal of the Learning Sciences), and teachers (Science Scope). The @Concord biannual 
newsletter, distributed for free to over 60,000 digital subscribers, will be another communication venue. 
The dissemination efforts will engage both academic and non-academic communities.  

Broader Impacts 
Artificial intelligence is increasingly important for success in school, work, and society more broadly. A 
curriculum module that provides authentic CS experiences, including innovative methods such as 
machine learning, could provide transformative impacts. The RPP will work directly with six middle 
school teachers and their students to engage in locally relevant science and computer science pedagogy 
that supports CS and ML for all students in Alaskan middle schools. The RPP aims to help ASD meet the 
educational goals established by the State of Alaska. By demonstrating the effectiveness of embedding 
computer science and ML into content courses at the middle school level, this project will produce a 
replicable pedagogical model for including machine learning in other STEM contexts, including algebra, 
physics, and career and technical courses. The project’s programming interface accesses Raspberry Shake 
seismograph data from all over the United States, making this tool widely relevant to teachers and 
students from all over the country. All project materials will be made available for free through 
open-source and open-content licensing. Research findings will be disseminated at conferences and in 
research and practitioner journals.  


	Separating the Signal from the Noise: Promoting Alaskan students’ inquiry with geographically relevant seismic data and machine learning techniques 
	Importance 
	Project Goals and Objectives 
	Design Principles for the SeismicML Instructional Materials 
	Description of SeismicML Instructional Materials 
	Research Plan 
	The DBIR Work Plan 
	Data Collection and Analysis 
	Results from Prior NSF Support 
	Partners and Responsibilities 
	Evaluation 
	Dissemination 
	Broader Impacts 

