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Science is among the most fundamental of all pursuits, engaging us in 

elemental questions that capture and motivate us. Wonder at the world’s 

unexpected surprises and curiosity about the unexplained galvanizes 

our irrepressible drive for understanding. This natural inclination holds 

significant potential for science education.

Perspective: 
Science Starts with Wonder   
By Chad Dorsey 

While many groundbreaking discoveries can be expected—from 
the ultimate revelation of an elusive particle to the confirmation 
of an essential genetic or molecular structure—the moments 
that truly matter can be tantalizingly elusive. A fleeting glimpse 
opens the door to a new paradigm. A tiny deviation causes one 
to question all that has come before. As Isaac Asimov famously 
noted, “The most exciting phrase to hear in science, the one that 
heralds new discoveries, is not ‘Eureka,’ but ‘That’s funny…’” 
 There are countless historical precedents for such discoveries. 
In the late 17th century, Antonie van Leeuwenhoek discovered a 
world of wonder in a simple drop of water—a teeming universe 
of life previously unknown to all, both within the realms of 
science and beyond. Spurred by this unexpected discovery, he 
cataloged this previously invisible world for the illustrious ranks 
of the academy.  Yet his bold claims—of countless omnipresent, 
minuscule living creatures—fell on skeptical ears. Unfortunately, 
the uneven development of microscopy tools precluded the abil-
ity of most others to see these “animalcules” for themselves. His 
discoveries were banished from the science mainstream for over  
a century and a half. 
 Just after the turn of the 20th century, another pioneer 
stumbled upon an unexpected moment of wonder. Charles 
Henry Turner, long fascinated by the actions of insects and other 
animals, moved a bottlecap next to a small hole he had dug. As 
an ant proceeded into this new, false burrow,  Turner recognized 
the significance—the ant was navigating based on landmarks in 
the world around it, incontrovertible evidence that the insect was 
learning. Although Turner was the first Black man to publish a 
paper in Science, racial discrimination stood as a constant barrier 
to wide airing of his discoveries. For many decades, his trailblaz-
ing ideas proved too forward thinking for the narrow-minded 
ranks of the more traditional scientists of his time.
 Common threads bind these stories together—the pure sur-
prise of the unexpected, the beckoning pull of the unknown, and 

the deep inspiration of wonder. Just as these experiences have 
pushed scientists forward for generations, they serve as equally 
powerful forces in our own personal experiences. Their universal 
attraction makes them valuable guideposts as we consider what, 
and how, to encourage future generations to learn about science.

Leaning into the unexpected  
Encountering the unexpected is a clear and compelling inspira-
tion for scientific investigation. When a beaker suddenly foams or 
changes color, when a ring appears around the moon on a frosty 
evening, or when an animal moves in a seemingly unnatural way, 
the jolt of the unexpected provides a revelation that one’s concept 
of the world is incomplete. 
 Pedagogically, this is highly useful. Science teachers routinely 
leverage surprising demonstrations to hook students’ interest, 
often to great effect. Our data science education research shows 
that students examining data attend more carefully to unexpect-
ed features, and that they will spend considerable time working 
to understand the nature and origins of such anomalies. 
 Oddities present lessons and opportunities far beyond the 
classroom and into the scientific enterprise as a whole. Stanford 
professor Garry Nolan, a renowned cancer researcher, inven-
tor, and co-founder of seven companies, states the importance 
of heeding this lesson. “It’s not the data that falls in line that’s 
so interesting,” he explains. “It’s the spot off the graph that you 
want to understand. When something is way off the graph, that’s 
the interesting thing, because that’s usually where discovery is.”
 While examining anomalies, learners exercise important  
habits of mind for scientific critical thinking. And when support-
ed in maintaining and honing these habits over time, learners can 
gain the inclination, and develop the fortitude, to stop and notice 
the unexpected, pose the right questions, and follow where the 
data leads. To get there, however, we must explicitly encourage 
this impulse.
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Following the unknown 
Sadly, exploring the unknown is miles removed from most students’ 
classroom experience. In far too many cases, we reduce education 
to a game in which teachers and students learn early on that success 
comes from closely following well-established rules and behaviors. 
In this traditional game of science learning, the sage teacher holds 
the answers and diligent students obediently follow along, remaining 
in their proverbial seats and prescribed roles until they are granted 
the appropriate knowledge and learn to parrot it back. 
 Just as frequently, this pattern pervades laboratories as well. 
Investigations abound whose goal is for students to confirm what 
is already known and to generate lab reports that conform to the 
composition rules of a carefully defined genre. These commonplace 
practices rob students of the most important aspect of science—the 
experience of the truly unknown.
 Fortunately, this cycle can be broken. Rather than follow a pre-
ordained process for laboratory investigations, teachers can provide 
students with the goal and let them reason out their own paths, just 
as scientists do. Contrary to the popular notion of an archetypal 
“scientific method,” scientists tinker, explore, hit dead ends, and 
retrace their steps. They work out problems through noisy debates 
with colleagues and on long, solitary walks. Discovery of the true 
unknown comes through persistence, patience, and puzzling. To 
provide students a taste of true science, we need to make room for 
true discovery.
 When confronted with the unexplained, an honest scientist 
digs in, chooses a path, and persists, following the data to uncover 
the wonder it reveals. Yet as history has shown, doing so can prove 
daunting, especially when pursuit of the unknown collides with 
the stigma of narrowly defined societal expectations. Whether in a 
professional laboratory or a high school classroom, fostering true  

scientific discovery requires us to remain open. Teachers must  
expand norms, provide students with open-ended technology 
tools that enable broad investigation, and encourage the early 
“messing around” stages that are central to the scientific process. 
Teaching today’s students to follow their own scientific north stars 
may be one of the most crucial learnings we can provide. One such 
innovative teacher tells the story of her journey in this issue.*

Welcoming wonder
Across time immemorial, humans have looked up at the night 
sky and mused about the deepest questions of existence. Such 
innate human wondering binds us together and inspires new 
exploration and scientific discovery. 
 This is the overarching lesson for teachers of the next gen-
eration. We cannot realize the wonders of the world for our 
learners. However, we can guide them thoughtfully, giving 
them space to follow the unexpected glimmers that speak to 
them individually. We can provide learning environments that 
value what they know and encourage them in chasing that 
wonder wherever it leads. We can and must work to ignite  
the spark for all students.
 Doing this begins by acknowledging and welcoming won-
der, in its many places and forms. The Concord Consortium 
believes that its mission—to innovate and inspire equitable, 
large-scale improvements in STEM teaching and learning 
through technology—holds the key to discoveries that could 
change the course of history. In doing so, we hope learners 
experience the inspirational power of wonder. Only in this way 
can we uncover answers to the unexplained.

Wonder at the world’s 

unexpected surprises 

and curiosity about the 

unexplained galvanizes 

our irrepressible drive  

for understanding.

Chad Dorsey 
(cdorsey@concord.org)  
is President and CEO of the Concord Consortium.  

*  Learn more about Julia Wilson’s inspirational teaching in our  
Teacher Innovator Interview on page 15. 
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By Jie Chao  

Exploring Artificial Intelligence  
with StoryQ   
Mia submitted her college applications—six schools carefully chosen with the help of her 

guidance counselor. Now the anxious waiting begins. But when an article on Artificial 

Intelligence (AI) catches her attention, her anxiety increases. She learns that some colleges 

are considering the benefits and risks of using AI systems to improve the admission process. 

Mia’s college essay might be “read” by AI instead of humans. The thought of a heartless 

machine scanning her work gives her chills. Will her chance to get into her dream college 

be influenced by an AI model that predicts her likelihood to be a successful student?  

Our Narrative Modeling with StoryQ project is creating tools, 
materials, and opportunities for young people like Mia to gain a 
fundamental understanding of AI as well as become a powerful 
voice in a society being rapidly reshaped by AI technologies. In 
this article, we walk through how a simple AI system works and 
how it is built. 

Clickbait filter
Nowadays, we read most news on the Internet because it’s  
convenient and has a wide coverage. But some headlines—called 
clickbait—are designed to entice us to click for content that is 
useless, deceptive, or misleading. Imagine if we could design an 
AI filter to detect and potentially remove clickbait from view. 
The key ingredient is a training dataset that includes a large 
number of examples of headlines labeled by humans as clickbait 
or non-clickbait (Figure 1). 

# Headlines Labels
1 Can you match the actor to their animated film roles? Clickbait
2 Covid in the Northeast Non-clickbait
3 32 gift ideas for the Canadian in your life Clickbait
4 Space Shuttle Discovery back in Florida Non-clickbait
(996 more rows)

Figure 1. A small subset of a training dataset for an AI filter  
on clickbait. 

# “you” “the” “in” (394 more columns) Labels
1   ---- Clickbait
2   ---- Non-clickbait
3   ---- Clickbait
4  ---- Non-clickbait
(996 more rows)

Figure 2. A feature table consisting of unique words frequently used.

 In our StoryQ app, developed as a plugin for our Common  
Online Data Analysis Platform (CODAP), we can extract many 
unique words from the headlines and transform the headlines into 
lists of words organized in a feature table (Figure 2).
 When we run this feature table through a machine learning 
program, the program discovers the rules of how these words are 
related to the labels and encapsulates these rules in a model. With 
this very basic approach, the model correctly predicts the labels for 
almost 90% of headlines. The approach is by no means state of the 
art, but it helps us see the inner workings of AI systems. But before 
we look at how the model works, it’s useful to reflect on how our 
brains work. 
 Consider this headline: The Struggles of Being a Sleepwalker.  
Curious? Want to know more? Tempted to click on it?
 You are not alone! Most people are intrigued by the chance to 
peek into this unusual syndrome. However, the headline’s hyper-
link leads to a distasteful short video surrounded by a blanket of 
advertisements and more clickbait—exactly what the headline was 
designed to accomplish. 
 What makes us take the bait? The words “struggles” and “sleep-
walker” bring to mind a topic that we know a little bit about and 
are interested in learning more. The content words do the “baiting” 
to our human brain.
 Does the model work the same way? Yes and no. While the 
model correctly labels it as clickbait, the words “struggles” and 
“sleepwalker” are completely irrelevant. In fact, they are not even 
in the model. What matters are the words “the,” “of,” and “being,” 
which are function words absent of any content. 
 The following annotated version is similar to what the model 
“sees.” The grayed-out words are ignored because they are not part 
of the model at all. The model only knows the underlined words, the 
so-called features, and uses them to make the prediction. 

 The Struggles of Being a Sleepwalker

Jie Chao     
(jchao@concord.org)  
is a learning scientist.
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By Jie Chao  

 For each feature, the model has learned from numerous examples 
how strongly it is associated with clickbait while considering the 
presence of other features. This relationship is captured as a numeric 
value called weight. The word “the” has a weight of 0.505, which 
is a fairly large positive weight, given that the weights of all features 
range from -0.636 to 0.952. The word “of” has a small negative 
weight of -0.133. “Being” is almost neutral, with a weight of 0.003. 
The three features and their weights, summarized in Table 1, are all 
the model knows about the headline.

Features Weights

the 0.505

of -0.133

being  0.003     

 With such seemingly limited information, how does the model 
use these features to make a prediction? Consider a bar graph where 
bar lengths represent the feature weights (Figure 3). Blue bars are 
the features pulling to the clickbait side and the orange bar pulls 
to the non-clickbait side. On average, there is a strong pull to the 
clickbait side. 

 The model goes through similar reasoning by plugging the 
numbers into a formula, computing the probability of the headline 
being clickbait, and labeling it as clickbait based on a predefined 
probability threshold.* Counterintuitive as it can be, this is how the 
model predicts clickbait, sometimes using contentless words. 

How did the machine learn?
The intriguing thing is how the machine learned this trick. Why 
do contentless words like “the” help predict clickbait? Recall that 
the machine learning program ran through the feature table and 
computed a weight for each feature. On the surface, the model just 
looks like a list of features, each with a weight (Table 1). 
 How does this simple list capture the rich meaning in the data? 
To get some insight into this question, we need to look at the fea-
tures in context. For example, the word “the” seems to be a neutral 
word—we use it to make grammatically correct sentences. Surpris-
ingly, in the clickbait model, the word “the” carries a large positive 
weight, making a headline much more likely to be clickbait if it 
contains this word. Why does a contentless word indicate the  
likelihood of clickbait? Let’s look at a few examples:

How well do you actually know the Addams family?

How well do you remember Season 5 of the Walking Dead?

Can you identify the Janet Jackson music video from a  
single screengrab?

 Notice that what follows “the” are popular culture topics, such as 
TV shows and celebrities, which are very common in clickbait. 
Let’s look at a few more:

18 times Squidward perfectly captured the dating struggle

40 country songs that defined your life in the early 2000’s

The recession may be a boon to book sales

 Look around the word “the.” Most people are familiar with  
“dating struggle,” “early 2000’s,” and “recession” as common social 
phenomena. One final set of headlines:

The hardest Thanksgiving poll you will ever take

We know which celebrity you dislike the most based on your 
zodiac sign

The toughest Dragon Ball A quiz you’ll ever take

 It’s not difficult to notice the exaggeration of “hardest,” “most,” 
and “toughest,” typical in clickbait. According to English grammar, 
such adjectives must be preceded with “the.”
 So, does “the” capture any meaning? The answer is no if we con-
sider the word by itself. But if we look at why it is used in certain 
contexts and what meanings it is associated with, the answer is yes. 
In these cases, the ties between “the” and popular culture topics, 
social phenomena, or comparative words come from grammatical 
rules in English.
 Many features, especially those carrying large positive or nega-
tive features, capture meanings beyond their own definition and have 
more to do with clickbait as a special genre. For instance, “you” is a 
strong clickbait feature, frequently used to convey an invitation or 
imperative to the reader. The word “are” is also a strong indicator 
frequently used before adjectives or to create questions, which are 
common styles for clickbait. Numbers are also common clickbait 
indicators used in listicle headlines. While a computer model does not 
feel enticed or curious as we humans would, it can “know” what each 
feature signals about the mechanism underlying our perceptions.

Exploring AI with StoryQ
In real practice, AI systems are far more sophisticated, though they are 
developed in much the same way. Mia may not feel better about the 
college admission process knowing how AI systems are created, but 
we hope such background emboldens her to question the appropri-
ateness of the AI applications she encounters in her life. StoryQ is 
designed to help students learn about AI’s power and its fallibility.

Figure 3. Bar graph of the feature weights.

Table 1. The features and 
weights of an AI model.

(continued on p. 6)

Jie Chao     
(jchao@concord.org)  
is a learning scientist.

*  The StoryQ app allows learners to train text classification models using the 
logistic regression model. When in use, the model computes the probability 
of a new headline being clickbait and labels it as clickbait if the probability 
exceeds 50%.  

L I N K S

StoryQ − concord.org/storyq

StoryQ app − concord.org/storyq/app

StoryQ curriculum − learn.concord.org/storyq

Clickbait filter − http://short.concord.org/lqi
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(continued from p. 5)

What is the goal of the StoryQ project?  
And what is your role?

My Ph.D. students and I have taught the StoryQ team 
about text mining and we serve as curriculum advisors 
on the project. In addition to developing and researching 
curriculum for high school students, the goal of the 
StoryQ project is to help people think more critically 
about what they read regarding AI in the media. There’s 
a lot of unproductive hype and fear out there and we 
want students to know enough about AI that they 
neither believe the hype nor succumb to fear. Another 
goal is to help students envision future careers in AI. In 
our professional development trainings with teachers, 
we describe the programs at Carnegie Mellon and the 
different career paths possible for students.
 
How would you describe AI to a novice? What’s 
the difference between AI and machine learning?

The field of AI started around 1950 with an effort to 
get computers to behave in intelligent ways through 
reasoning that was automated. Machine learning is about 
pattern recognition and it’s based in the field of statistics. 
Machine learning is just one aspect of AI.
 
“Exploring Artificial Intelligence with StoryQ” 
posits the idea of a college admissions office 
utilizing AI. What would you say to Mia to make 
her less anxious about their use of AI?

I would tell her emphatically not to worry! It’s important 
to realize that admissions essays are a very different 
kind of writing. The College Board has used automated 
assessment on writing samples that are very topically 
focused and very narrow in terms of content, things you 
could build a model to make a prediction on. College 
essays are very broad and personal, and it’s not entirely 
clear what a college admissions committee wants to 
learn from them. If they were simply looking for “good 
writing,” I would trust a machine, which can check for 
grammar and well-formed sentences. This highlights 
an issue of AI in the media in general—people don’t see 
these distinctions. They don’t realize how the data and 
the nature of the judgment are different. Just because a 
feature got a high weight, that doesn’t mean it’s finding 
out what makes people click on clickbait.
 

So, are words like “the” and “of” actually 
indicators of clickbait?

I don’t think you can conclude that just because you 
know which things people clicked on that you are 
identifying what made people click. You’re probably 
identifying something that correlates with what made 
them click, and that might not even be in the writing at 
all. It might be an abstraction over the writing, but not in 
any individual word. So, if you represent the data in terms 
of features that are words, then you don’t have features 
to put weight on that are the real reason why somebody 
clicked on it. The word “the” is thus probably what we 
would call “misplaced weight.” It’s one existing feature 
that correlates with the real thing, which might not be 
anywhere in the feature space. The key point we want 
students to learn is that behavior that looks intelligent is 
not necessarily driven by a human kind of intelligence.
 
The article concludes that AI is both powerful 
and fallible. Where do you see its power  
and its failure? 

Computer programs have the ability to process a lot of 
information very quickly. That seems very powerful. For 
instance, when you start typing in Gmail, it shows you 
what you might want to say next. That comes from a 
giant language model, but because people see that as 
a prediction about what they were thinking, they feel 
like it’s reading their mind. Humans are good at finding 
regularities, but not as good as computers. But humans 
can do creative problem solving way better.
 
How can a teacher use StoryQ?

We believe that feature engineering is a great fit for 
English Language Arts classes at the high school level. 
Students can learn about language constructs and what it 
is about language that makes it seductive or interesting.

You can try the curriculum at learn.concord.org/storyq

 

Q&A with Carolyn Rosé, Ph.D. 
Carolyn Rosé is a Professor of Language Technologies and Human-Computer Interaction  
at Carnegie Mellon University, Interim Director of the Language Technologies Institute,  
and Co-Principal Investigator of the StoryQ project

StoryQ



c o n c o r d . o r g  •  v o l . 2 6  •  n o . 1  •  S p r i n g  2 0 2 2   7

Monday’s Lesson:  

Tephra in the Wind
By Chris Lore

Chris Lore     
(clore@concord.org)  
is a research assistant. 

The world was rocked by several large volcanic eruptions in the past year, from the 
explosive activity of Mount Sinabung in Indonesia to the incredible lava flows of La Palma  
in the Canary Islands and Fagradalfjall in Iceland. Eruptions of all types display the incredible 
power of volcanoes and the unstoppable hazards they create. Volcanic ash particles called 
tephra ranging in size from tiny glass fragments to large boulders explode from these 
eruptions, harming people and destroying property. In this Monday’s Lesson, students 
explore environmental factors that influence where tephra falls.

Our GeoCoder model allows students to experiment with both 
wind speed and direction to see how these factors affect the tephra 
distribution around a volcano. The model focuses on the Cerro 
Negro volcano in Nicaragua, an active cinder cone volcano that has 
erupted 10 times in the last 60 years. Using block code, students set 
values for wind speed and direction, which the simulation uses to 
produce a tephra distribution. The model output visualizes the area 
covered in tephra as well as the thickness of tephra on a map of the 
region around Cerro Negro.

1  Open the GeoCoder  
Go to geocode-app.concord.org 
In the Blocks menu on the left, go to the “Volcano” tab. Drag 
the block called “Compute and visualize tephra with wind speed 
(m/s) and wind direction (degrees)” into the program workspace. 
Click the “Data” tab and pull a number block into the slot next 
to wind speed. (They fit like puzzle pieces and lock into place.) 
Set the wind speed by clicking the number to change it to any 
value between 0 and 30 meters per second (or up to about  
70 mph). Next, drag another number block and put it in the 
wind direction slot. Set the value between 0 and 360, which 
defines the direction the wind is blowing from. Finally, run 
the model.

2  Analyze the tephra distribution  
After the code runs, a multicolored tephra  
distribution appears on the map as colors  
representing the thickness of tephra (Figure 1). 
(See the key in the upper right of the map.) 
Zoom in to see the towns and cities covered by 
tephra and use the ruler to measure how far the 
wind blew the tephra from the volcano. 

3  Discover patterns  
Reset the model, then change wind speed and/or 
wind direction to explore their effects on tephra 
distribution. How does the shape of the distribu-
tion change as wind speed increases? Which wind 
direction causes the most towns to be covered in 
tephra? To simulate multiple eruptions in a single 
run, stack two “Compute and visualize” blocks  
on top of each other with different inputs. 

4  Dig deeper  
To experiment with the size of the eruption, change the  
Volcanic Explosivity Index (VEI) value of eruptions (0-8)  
following the steps above to add a volcano block with VEI  
and number blocks. VEI accounts for column height and  
ejected volume, which affect the distribution of tephra. 

5  Discuss  
What are the impacts of tephra falling on people’s homes, cars, 
and their agricultural land? Only a few millimeters of tephra 
ash can devastate vegetation by covering leaves and preventing 
photosynthesis. Thicker tephra deposits (100-300 mm) can  
collapse roofs and limit ground and air transportation.  

Looking for more?     
Created by our GeoCode project, the GeoCoder has been embed-
ded in a weeklong curriculum unit for middle and high school 
classes. Students explore tephra distributions and wind data to make 
risk assessments for the towns surrounding Cerro Negro. 

L I N K S

Tephra module − learn.concord.org/geocode-tephra 

Figure 1. The GeoCoder model 
includes a block programming 
workspace (left) and a model 
output visualization map (right).

StoryQ



8 c o n c o r d . o r g  •  v o l . 2 6  •  n o . 1  •  S p r i n g  2 0 2 2 

“ The specter of climate change threatens worsening natural 

disasters, rapid urbanization, forced migration, and economic 

hardship for the most vulnerable.” 

– Tedros Adhanom Ghebreyesus, Director-General of the World Health Organization

As global temperatures continue to rise, so do the 
number, size, and impact of climate-fueled natu-
ral hazards, transforming lives across the planet. 
The Washington Post reported that in 2021, one in 
three Americans had experienced a natural hazard. 
Climate scientists warn that there will be more 
frequent and more extreme events. For today’s 
students, the idea of climate change is no longer 
an abstract concept. 

Teaching about natural hazards such as wildfires, floods, and  
hurricanes and their relationship to climate change poses an 
opportunity and a challenge. Students are now likely to have 
some direct experience with living through or knowing someone 
who has lived through a natural hazard. This makes the study of 
natural hazards personally relevant and meaningful. Along with 
this real-world experience, however, many young people are also 
anxious and angry about the insufficient ways in which climate 
change is being addressed. The GeoHazard: Modeling Natural  
Hazards and Assessing Risks project has identified opportunities 
for students to critically engage in discussions about natural  
hazards and considerations related to how these hazards are  
affecting people.  
  Three of our online curriculum modules about hurricanes, 
wildfires, and inland flooding are now publicly available. Each 
GeoHazard module supports student inquiry with embedded 
Earth systems models that allow students to explore the factors 
that influence the formation, progression, and severity of each 
hazard, as well as the factors that contribute to potential risks to 
people and their communities. During three years of pilot test-
ing the modules, we learned that it is important to help teachers 
engage students in these topics despite the difficult concepts and 
emotions that often accompany these discussions.

Situating student learning in the context  
of socioscientific issues
A Framework for K-12 Science Education identifies the importance  
of connecting natural hazards to human activities. ESS3B: Natural 
Hazards and ESS3:D Global Climate Change explore the human 
activities that have significantly altered the environment and the 
major factors responsible for these environmental changes. They 
charge students with investigating human vulnerabilities and  
understanding human behavior. 

Our hurricane, wildfire, and flood modules all address the  
following questions:

1  What environmental factors play major roles in the  
development of this natural hazard? 

2  How does this natural hazard impact people and  
their communities? 

3  What do rising global temperatures mean for the risks  
and impacts humans face from this hazard? 

 Natural hazards are both awe-inspiring and terrifying, and they 
can spark students’ natural curiosity about the power of Earth’s 
systems. Because they are personally relevant to so many stu-
dents, they also provide a rich context to explore socioscientific 
issues. This means that in each module, students explore both 
the scientific phenomena of a natural hazard and the impacts on 
people and their communities, including the disproportionate 
consequences for vulnerable members of the population. In the 
hurricane module (Figure 1), for example, students investigate the 
reasons why some members of a population cannot evacuate prior 
to a hurricane, considering how illness, poverty, and occupation 
(for example, first responders and firefighters) might prevent 
evacuation. These topics can generate deep discussions and allow 
students with personal experience to share their stories. 

Addressing  
Socioscientific Issues
While Studying Natural Hazards  

Amy Pallant      
(apallant@concord.org)  
is a senior research scientist.

Trudi Lord    
(tlord@concord.org) 
is a senior project manager.

By Amy Pallant and Trudi Lord
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GeoHazard  
concord.org/geohazard

Figure 2. In the flood module, students use the Flood Explorer  
to consider the effects of flooding on different communities.

Figure 1. In the hurricane module, students use the Hurricane 
Explorer to investigate factors that affect hurricane strength.

 While many teachers are interested in teaching 
about natural hazards, some find it difficult to dis-
cuss the socioscientific issues in their classrooms. 
Through teacher tips embedded in the modules, 
we support teachers in handling socioscientific  
issues, focusing on places where they can 
facilitate discussions of students’ experiences. 
A separate guide provides additional informa-
tion on establishing norms for discussions around 
personal experiences and supporting students to 
construct explanations and ideas that are based on 
evidence as much as possible. 
 Similarly, we prompt teachers to discuss issues 
around climate change and what people might do 
to reduce the impacts of future hazards. Helping  
students learn about the part people play in 
causing climate change, as well as their role in 
addressing it, is an important part of the Next 
Generation Science Standards. 

Inviting students to share experiences
Each module begins with a prompt inviting students to describe their lived experiences with the natural hazard and to share their questions. 
The goal is to provide an opportunity for students to express their full range of experiences and to support teachers in holding a conversation 
that could, for example, include small, local floods to catastrophic flood events. Student responses to this question in the flood module  
(Figure 2) ranged from those who had never witnessed a flood to some who had firsthand experience. 

“ I never experienced flooding but I could 
imagine how people were impacted by this.”

“ I have never been seriously impacted by 
flooding but I have been stuck in my house 
and out of my house for multiple days 
because the water was over the road.”

“ My grandma’s house got flooded and she 
had to live with us for four months till she 
would get her house fixed.”

“ Someone I know has been impacted by a 
flood. The flood of 2021, one of my sister’s 
friend’s house was destroyed by the flood 
waters and they had lost everything they 
have owned. They had to quickly evacuate 
their home with nowhere to stay.”

“ Yes the last time it flooded our whole yard 
was covered from our Creek being so high. 
It was coming in through the side of our 
house and we had to move everything that 
was in the den.”

 As these responses make clear, students are 
already grappling with natural hazards and the 
complex ways in which these hazards intersect with 
their daily lives. Rather than leaving these social 
aspects out of the science classroom, the GeoHazard 
modules explicitly integrate instructional strategies 
for addressing them. By exploring natural hazards 
in the context of personal and community vulner-
abilities, students can expand their notion of why 
studying these real-world topics is important for 
tackling the consequences of global warming and 
adapting to future natural hazard emergencies.
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Every day, many students and their families make choices 
about what foods to eat. Families tell stories around the 
table, including stories about the food they’re preparing and 
consuming. But what about the food’s nutritional value or its 
popularity—stories informed by data? The Writing Data Stories 
project developed curriculum to help students unpack stories 
about everyday issues like food told through data. 

Hollylynne S. Lee, Michelle H. Wilkerson, David Stokes, and Bill Finzer

Data Story Bytes:  
Examining Healthy Food  
Through Data

Our goal is to investigate important socioscientific issues such as 
food, the environment, and climate by analyzing scientific datasets 
using “data storytelling.” We created curricular activities called 
Data Story Bytes or simply Data Bytes, intended to be “bite-sized” 
data activities completed in 30 minutes or less to help students 
interpret data graphs and visualizations related to various STEM 
concepts. They are similar to the popular New York Times feature 
“What’s Going On in This Graph?” and “Data Talks” developed by 
Youcubed, but are uniquely structured to help frame students’ inter-
rogation of data. Using a four-part questioning framework, students 
consider where the data came from, who is represented or omitted 
from the data and other equity issues, and the implications of the 
dataset for their personal lives (Figure 1). 
 Data Bytes are available as Google Slides for students in grades 
6-12 in different subject areas (e.g., science, social studies, health, 
math, English, business), and they include directions in both Eng-
lish and Spanish to support multilingual learners. The Teacher’s 
Guide includes resources for using and creating your own Data 
Bytes. In this article, we explore one Data Story Byte in detail,  
taking a bite out of food data in “What’s healthy?” 

What’s healthy?
Set the stage by asking students to name foods they eat that they 
consider healthy or unhealthy, creating two lists on a white board or 
shared Google Document. Do any students disagree with the foods 
listed as healthy or unhealthy? Why might people disagree?

Explore the graph 
Next, share the graph published in the New York Times article “Is 
Sushi ‘Healthy’? What About Granola? Where Americans and Nutri-
tionists Disagree” (Figure 2). The graph plots 52 foods by the percent 
of “everyday Americans” who say the food is healthy vs. the percent 
of nutritionists who say the food is healthy. 

 
Figure 1. The four-part questioning framework for each  
Data Story Byte.

Figure 2. Different foods plotted by the percent of Americans 
who say the food is healthy vs. the percent of nutritionists who 
say the food is healthy. Source: The New York Times.
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 Using a copy of the Google Slide Deck for this Data Bytes activity, 
ask students to describe what they notice in the graph. Encourage 
students to look for information in the news article that can help 
contextualize how and why the data was collected, and from whom.
 Use the following questions or develop your own to prompt 
students to think more deeply about the graph. Encourage students 
to move beyond the data to connect the patterns they see to their 
personal lives and communities, to consider what perspectives are  
included or left out, and to develop new questions. Students can work 
individually, in small groups, or in a whole class discussion. 

Making sense of trends and relationships

What is the first thing you notice or wonder when you see the graph? 
Were any foods on our healthy or unhealthy list represented in this graph? 

What relationships or trends do you notice?
What does the line represent?  
Why are some foods closer to the line than others? 
What can you say about foods located above the line versus ones  
below the line?

Personal connections 

What personal connection do you have with the data or patterns  
in this graph? 

Can you locate any foods that you eat? If so, explain where they are  
located in the graph and the approximate percentage of each group  
considering it a healthy food. 
Where do you think your favorite food might be located in this graph? 

Which people or groups do you think would feel more or less  
of a connection with the data or patterns here? 

How might this graph change for people with dietary restrictions? 
Which foods are missing that are important to you?  
Why might they be missing?

Context and history 

Who do you think made this graph? Why did they collect this  
information and create this graph? What did they want to know? 

How were the 52 foods chosen for the survey?
What are the strengths and weaknesses of using that method to decide 
which foods to include? 
Who may have been surveyed as part of the “all Americans” group? 
Do you think this graph represents foods from a particular culture  
or a particular part of the world?

How might these patterns be different if the data had been  
collected about different people or in a different time period? 

What might you say about the group of foods towards the lower left  
of the graph? 
How do you think the graph would change if the “all Americans”  
survey results were replaced with survey results from our class? 

Future uses of data 

What are some questions you can (or cannot) use this data  
or graph to answer? 

Can you say whether or not your diet is considered healthy based  
on this graph? 
Why might nutritionists disagree about which foods are healthy or not?

What could you do to make this more useful for yourself or others 
who might not be included?  
Would you collect more data, or group or graph the data differently? 

Do you think there is a relationship between food cost and its location  
on the graph?  
What data would you need to answer that question?  
How would you collect it?

Extension activities
With answers to the above questions as well as new questions  
inspired by the Data Bytes activity, students make deeper connec-
tions between data and their lives. Students can use the Common 
Online Data Analysis Platform (CODAP) to extend their learning.

•  The graph focuses on whether nutritionists and “everyday 
Americans” agreed that a given food is healthy. But not everyone 
surveyed entered a response for every food, and some people 
responded “No” or “Don’t Know/No Opinion” for a given food. 
Explore a CODAP document created from the survey data files 
linked in the article footnote (Figure 3).

•  Although 71% of the public rated granola bars as “healthy,” only 
28% of nutritionists agreed. However, all granola bars are not the 
same. Explore a CODAP document with a dataset of nutritional 
values for 33 different granola bars. 

We hope that Data Story Bytes help students critically analyze and 
interpret data visualizations in ways that connect to their lives and 
to important issues in society. Perhaps the data will even make for 
dinnertime conversation about the foods students are eating.

L I N K S

Data Bytes Teacher’s Guide   
https://bit.ly/WDSdatabytes

What’s Healthy Student Slide Deck  
https://bit.ly/DataByteHealthy

CODAP Document of “What’s Healthy?” data   
https://bit.ly/CODAPHealthy

CODAP Document of granola bars data  
https://bit.ly/CODAPGranola 

Writing Data Stories project   
https://www.fi.ncsu.edu/projects/data-stories

Figure 3. CODAP document created from the survey data files 
linked from the New York Times article “Is Sushi ‘Healthy’? What 
About Granola? Where Americans and Nutritionists Disagree.”
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An ice cube melts when warmed, then refreezes when cooled. This 

simple phenomenon offers kindergarten students the opportunity 

to learn about solids and liquids, and the change between states. 

But what if young students could do more than observe macroscopic 

events? What if they could also develop and use models to make sense 

of the invisible? To find out, the Sensing Science Through Modeling 

Matter project developed four apps and a curriculum for kindergarten 

students to explain states of matter and phase change from a 

particulate view of matter. 

Our project research focused on kindergarten students’ learning 
about matter. Do their concepts of matter change as they interact 
with the Sensing Science apps and curriculum? Are different apps 
associated with differences in students’ learning? Are students’ 
conception of particles consistent as they explain varied macro-
scopic phenomena?

The curriculum
The Sensing Science Through Modeling Matter curriculum includes 
three multiday inquiry-based lessons around modeling, states of 
matter, and phase change. In the first lesson, students learn about 
the use of models and modeling across scales. For instance, globes 
and maps both model the Earth. Models can also represent invisible 
things, such as the particles that make up matter. 
 Students use an app called the Thermoscope to see inside matter; 
two on-screen circles act like “magnifying glasses.” When fast-acting 
temperature probes are placed into hot and cold water, students use 
the Thermoscope to observe the relationship between temperature 
and speed of particle movement (Figure 1). Next, students read the 
animated Land of Bump story, which illustrates what happens when 
hot and cold dancers mix together on a dance floor (Figure 2). The 
animated characters demonstrate a scientifically accurate computa-
tional model of water at different temperatures, and act as a  
metaphor for the motion of particles. 

 In the second lesson, students learn about states of matter and 
the relationship between the macroscopic properties of each state of 
matter and the behavior and arrangement of the microscopic particles 
that make up matter using one of two apps. The Particle Modeler is 
designed for students to discover the patterns of particles that adhere 
to known physical laws (Figure 3). The Thermonator allows stu-
dents to set rules for the way particles move and interact, including 
examples that are counter to physical laws (Figure 4). Then students 
use their bodies to model the arrangement and motion of particles 
in a particular state of matter, for example, by wiggling in place or 
moving more freely to represent solids and liquids, respectively.
 In the third lesson, students investigate melting, freezing, 
evaporation, and condensation. First, they observe macroscopic 
examples and draw their predictions of the particle model for 
each phase change. Next, they use the same apps to observe the 
microscopic particle model and revise their predicted models. 
Finally, they construct human models of each phase change as in 
the previous lesson.
 Kindergarten students from seven classrooms (n = 139) in three 
U.S. public schools participated in the study in the spring of 2019. 
In Technology Group 1 (n = 95), students used the Thermoscope, 
the Land of Bump, and the Particle Modeler. In Technology  
Group 2 (n = 44), they used the Thermoscope, the Land of Bump, 
and the Thermonator.

By Carolyn Staudt, Jamie Broadhead, Ala Samarapungavan, and Lynn A. Bryan

Figure 1. The Thermoscope, which 
works with or without temperature 
probes, is a simplified visualization 
of particle movement that makes 
the temperature differences 
between two materials visible. 

Figure 2. The Land of Bump is an 
animated story that introduces 
the motion of particles related to 
temperature and energy transfer in 
an accessible, interactive way. 
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Research with kindergarteners
Students worked in pairs on iPads, which allowed us to record 
their interactions with the apps as well as their conversations with 
one another through screencast recordings. Students were asked to 
draw and describe their understanding of the states of matter and 
phase change in individual project notebooks. We also interviewed 
students before and after they used the curriculum. Using this data, 
we compared changes in students’ models of matter before and after 
completing the curriculum. 
 To analyze students’ responses to interview questions we used 
a coding scheme based on both “top down” theoretically derived 
coding and “bottom up” or inductive coding based on an analysis 
of the data. Our coding scheme included component coding 
and coherence coding. The component-level coding focused on 
students’ responses to individual question sequences. For example, 
states of matter questions were coded for students’ descriptions of 
the a) composition of the material, b) arrangement of the material’s 
smallest component pieces, and c) motion of the material’s smallest 
component pieces. 
 After the component-level coding was completed, we conducted  
a coherence analysis to examine the degree of consistency and  
accuracy in students’ use of particle models across states of matter 
and phase change question sequences. 

Results
When we analyzed pre- and post-interview data, we found sig-
nificant gains in the kindergarteners’ ability to understand and use 
simple particle models to explain material phenomena. There were 
gains in component score for materiality (i.e., the ability of students 
to describe matter), states of matter, and phase change, as well as 
total score (Table 1).

T A B L E  1 Minimum Maximum Mean Standard 
Deviation

Pre Total 12 150 43.47 12.93

Post Total 12 150 79.05 24.53

Pre Materiality 2 15 5.59 2.16

Post Materiality 2 15 8.43 2.86

Pre States of Matter 3 96 20.97 9.91

Post States of Matter 3 96 46.79 19.40

Pre Phase Change 7 39 16.92 4.84

Post Phase Change 7 39 23.83 7.44

 Because we had designed the Particle Modeler and the Ther-
monator with different approaches based on different learning 
theories, we were also interested in the different technologies. 
While students in the two technology groups were equivalent in 
their initial knowledge of states of matter and phase changes, we 
found a very small but statistically significant effect on gains from 
pre- to post-interview total scores for technology. Students who 
used the Thermonator as part of Technology Group 2 had slightly 
higher total scores and component scores than those who used the 
Particle Modeler in Technology Group 1 (Table 2). 

T A B L E  2 Sample size Mean Standard Deviation

Pre Total 
Technology Group 1

95 42.03 12.89

Pre Total 
Technology Group 2

44 46.59 12.60

Post Total 
Technology Group 1

95 75.92 25.81

Post Total 
Technology Group 2

44 85.79 20.16

Students from all seven classrooms showed a shift towards more
coherent particle model use for both states of matter and phase 
change phenomena. The frequency of macroscopic states of matter  
models decreased while the frequency of microscopic particle 
models increased. A similar pattern appears to hold for phase change 
models, although relative to the states of matter models, a greater 
proportion of the phase change models remained macroscopic. In 
particular, there appears to be a greater frequency of macroscopic  
or unclear models on the phase change prediction activities, sug-
gesting that children start with less understanding of phase change 
phenomena than their understanding of states of matter.

Conclusion
Our study found that kindergarteners can learn to use simple par-
ticle models to explain the microscopic features and behaviors that 
characterize matter in solid, liquid, and gas states, and during phase 
changes. While this study is small and further research is needed to 
examine the role of different modeling practices, we believe it sheds 
important light on the value of introducing simple particle models 
to early elementary students. 

L I N K S

Sensing Science Through Modeling Matter    
concord.org/sensing-science

Table 1. Descriptive statistics of pre- and post-interview total and 
component scores. N=139.

Figure 3. The Particle Modeler 
was designed for open-ended 
discovery. Students can drag 
particles and increase or decrease 
the temperature to observe their 
behavior.

Figure 4. The Thermonator allows 
students to add and arrange particles 
inside a virtual container and test 
normative and non-normative ideas 
about particle behavior.

Table 2. Descriptive statistics of pre- and post-interview total and 
component scores by technology.
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Under the Hood:
Characterizing Systems Model Structure

SageModeler, our free, web-based systems modeling tool developed with our partners at the CREATE 

for STEM Institute at Michigan State University, supports middle and high school students and teachers 

in understanding systems and system modeling, one of the seven crosscutting concepts in the Next 

Generation Science Standards. With new automated model tagging in SageModeler, we can now provide 

teachers more information about their students’ understanding of systems. 

By Dan Damelin

L I N K S

SageModeler   
sagemodeler.concord.org   

graphlib   
github.com/dagrejs/graphlib  

topology tagger –   github.com/concord-
consortium/topology-tagger   

To represent key components of a system, 
students first place nodes on the SageMod-
eler canvas, then link the nodes together, 
specifying the semi-quantitative effect 
of one node on another to describe the 
web of relationships. They are thus able 
to build a computational model of their 
own conceptual model, then simulate the 
model and generate output to compare to 
the real-world behavior of that system.
 When simulated, the model’s structure 
and the set of relationships between model 
components dictate model behavior. To 
assist teachers and researchers in under-
standing certain characteristics of model 
structures, we developed algorithms that 
can automatically generate tags about a 
model’s structure, including branching 
chains, linear chains, and feedback loops.
   We started with an open-source graph 
introspection library called graphlib, 
which assumes graphs with structures 
consisting only of nodes and directed 
links (Figure 1). This graph is analogous  

to structures students make with a static 
equilibrium model in SageModeler  
(Figure 2).
 We extended the graphlib library and 
created our own open-source npm pack-
age to analyze dynamic time-based models 
in SageModeler, which include special 
variables called “collectors” (traditionally 
called stocks) and flows. Figure 3a shows 
a flow between two collectors. Notice the 
single arrow from one collector (carbon 
in fossil fuels) through the valve (which 
controls the rate of flow) to the second 
collector (CO2 in atmosphere). The valve 
node describes how much to subtract from 
the source collector, which is then added 
to the destination collector.  
 In order to utilize features of standard 
graph analysis packages like graphlib, we 
first convert such structures behind the 
scenes to something that is semantically 

identical but represented using just nodes 
and directed arrows (Figure 3b). This  
allows us to automate the process of  
tagging particular characteristics in  
the models.
 Students build and revise their models 
throughout our SageModeler curricular 
units. It would be daunting to analyze the 
thousands of student models created across 
our research cohort of teachers. Using 
the new model tagging algorithms, we can 
process large quantities of models and learn 
how model structures tend to evolve over 
the course of model revisions as well as how 
different scientific phenomena (e.g., preda-
tor and prey or chemical reactions) elicit 
different kinds of model structures.
 Automated model tagging can also help 
teachers, allowing them to scan a list of 
student models and know something about 
the structure of each model. Did students 
use feedback loops to show exponential or 
logarithmic growth? Are models branched 
to show two outputs? Selecting and 
discussing various ways students model 
phenomena can propel class discussion.
 Our goal is to support student under-
standing of modeling and systems. As 
machine learning continues to develop, 
model tags may go beyond simple struc-
tures and include key ideas represented  
(or missing from) models.

Dan Damelin     
(ddamelin@concord.org)  
is a senior scientist.

Figure 1. Example generic 
graph consisting of nodes 
and directed links.  
Source: https://github.com/
dagrejs/graphlib/wiki/API-
Reference#alg-components

Figure 2. Example static equilibrium model 
of photosynthesis reaction.

Figure 3a. Flow of carbon from fossil fuels 
to the atmosphere represented by using a 
transfer relationship.

Figure 3b. Semantic representation of flow 
using nodes and directed links. The flow node 
has a negative impact on the source collector 
(blue arrow) and a positive impact on the 
destination collector (red arrow).



Teacher Innovator Interview:
Julia Wilson  
High school chemistry teacher  
Portsmouth, Rhode Island
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Julia Wilson knows that her 10th grade chemistry students 
wonder, “Why am I sitting in this classroom counting atoms on 
a worksheet?” But she is optimistic that she can help them see the 
purpose in science. Online resources and a new approach to labs 
are helping expand her students’ knowledge.
 Julia, who teaches at Portsmouth High School, laughs, “It’s 
very odd to be teaching where I grew up.” Chemistry is the “cen-
tral science” at the physics first school, tucked between physics in 
9th grade and biology in 11th. According to Julia, chemistry is a 
gray area for students. “Kids understand physics in everyday life 
and they understand the biology of what they’re living, breathing, 
experiencing.” Her goal is to build bridges between those two 
subjects and help students see the importance of chemistry for 
explaining the world. 
 Julia is a research participant in our National Science  
Foundation-funded InquirySpace project, which offers tools  
and a curriculum sequence that guides students through conduct-
ing open-ended investigations. She admits, however, that when 
she tried to simply pop an InquirySpace activity into her class, 
it failed. Reflecting on the experience, she says, “I was trying 
to make inquiry look like a traditional lab.” Julia now focuses 
on providing supports for her students while letting them figure 
things out on their own.
  Passionate about teaching, Julia describes her path to the 
classroom as non-traditional. With several medical professionals 
in her family, she mapped a pre-med route, majoring in biology 
and working as an EMT at Bates College. But it was there that 
she realized she wanted to teach. Although she took some educa-
tion classes, she did not have the traditional teaching credentials 
when she graduated, so she signed up with Teach for America. 
After a six-week summer preparation program, she was assigned 
to a school in St. Louis where she taught geometry for a semester 
then chemistry for a year and a half.
 When she moved back to the East Coast to be closer to  
family, she was hired as the inaugural chemistry teacher at a new 

charter school in Lynn, Massachusetts, and had the opportunity 
to design the curriculum. But it was a physics class that changed 
Julia’s classroom practices. She recalls, “There were so many  
opportunities to let kids play with things.” For example, she gave 
students a ping pong ball and a meter stick and had them prove 
Newton’s Second Law. “That shifted my thinking about what  
science could look like and what students are capable of doing.” 
 In Portsmouth, Julia now strives to teach chemistry through 
that same lens. The InquirySpace curriculum units are aligned 
with this approach, each focusing on a driving question, such as 
“Why do I feel cold after getting soaked with water, even on a 
hot day?” When her students recently completed this unit, Julia 
was thrilled that they were able to apply the same scientific  
concepts to a new context when she asked them why ice keeps 
their soda cold.
 She also credits the Next Generation Science Standards for 
shaping what science can look like, though she believes teachers 
need support in implementing inquiry while achieving content 
standards. In her own classroom, she aims for that “sweet spot 
between content and inquiry,” working to transform otherwise 
cookie cutter labs into inquiry-based opportunities. For instance, 
she gives students vinegar and baking soda to investigate the 
conservation of mass. “Here are your materials,” she tells them. 
“Have fun.” 
 It’s important to Julia that her students understand that they’re 
learning not only science concepts, but a way of thinking. She says, 
“A big part of InquirySpace is getting students to see the why.”

Julia Wilson tests how many drops of water, isopropyl alcohol, and 
acetone can fit on a penny during an InquirySpace professional 
development session.   

Sample student analysis of the InquirySpace evaporative cooling 
curriculum unit with experimental results displayed in CODAP. 



Upgrading CODAP and Strengthening  
Data Science Education Outreach 
Data fluency—the ability to explore, interpret, visualize, and trans-
form data into actionable next steps—is critical for both STEM 
learners and future STEM workers as well as for participation in 
modern society. Our Common Online Data Analysis Platform 
(CODAP) is a free, open-source, web-based learning environment 
aimed at bringing data fluency to everyone, especially learners in 
grades 5-14. Designed to support data exploration in a user-friendly, 
visual, and accessible manner, CODAP received a Research-Based 
Design Product Certification from Digital Promise for its basis in 
learning sciences research. 
 CODAP has been pursuing its mission steadily, and we’re  
excited to note that this year marks its tenth birthday! In the  
decade since it was first introduced as the data analysis environ-
ment for our InquirySpace project, the CODAP codebase has 
grown to include a robust suite of features, scaffolds, and tools. 
Given CODAP’s ongoing success, we are especially thrilled to 
announce that we are now re-engineering CODAP to modern-
ize its underlying codebase and provide a fully open, flexible, and 
customizable online learning platform prepared to support data 
science education well into the future. 
 The re-architecture of CODAP will include technical upgrades 
to enable its long-term scalability and sustainability, and will inte-
grate the Concord Consortium’s latest work on collaborative tools, 
laying the groundwork for students to work together on larger and 
more challenging data exploration problems. As part of this new 
design work, we will engage K-14 audiences and youth in  
community-based citizen science projects, build out support  
resources and opportunities, and partner with dozens of organizations 
to ensure CODAP meets the needs of learners and programs that 
seek a free, open-source, and extensible data learning platform.
 In addition, we are pleased to announce complementary work 
supporting data science education research. Thanks to new support 
from the Valhalla Foundation, we will work to build, support, and 
catalyze the data science education research community. We are excited 
to see these complementary initiatives yielding improved data-driven 
inquiry experiences, fostering and deepening research into different 
aspects of data education, and strengthening data fluency across a 
vibrant networked community of users and partners in both formal 
and informal science learning spaces within K-12 education.

Innovative Technology in Science Inquiry  
for Yup’ik Students
Two new projects—focused on grades 3-5 and 6-8, respectively— 
are supporting Yup’ik students in Hooper Bay, Alaska. We are engag-
ing community partners, teachers, and students in adapting Concord 
Consortium STEM units by including local phenomena and Uni-
versal Design for Learning (UDL) features. The goal of both projects 
is to create dual-language, place-based STEM curricula based on 
Innovative Technology in Science Inquiry resources. The curricula 
will support the needs of English language learners while simultane-
ously providing a means for students to learn in their Yugtun Alaska 
Native language. 
 We will embed UDL and Yugtun language features such as a  
glossary in both English and Yugtun, videos with Elders, and  
speech-to-text and text-to-speech capabilities. The curricula will 
follow the multidisciplinary and multi-age 7E model of instruction 
at the core of Hooper Bay Charter School, with design features that 
are adaptable to other languages and cultures. Students will  
receive trade books and other print resources related to the STEM 
units for home use and sharing.Teachers will participate in remote 
professional development and learn to use data-based evidence about 
their students’ learning through the Concord Consortium’s reporting 
and dashboard systems to individualize instruction.
 The projects aim to increase teachers’ self-efficacy for multi-
disciplinary science instruction for dual language learners; provide 
training for critical evaluation of culturally relevant curriculum; and 
improve student interest and achievement in literacy, math, and sci-
ence, as well as their reported sense of cultural connectedness.
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