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We are living in an exceptional new technological era. Yet looks can be 
deceiving. In fact, what most strongly defines our current age is not all 
the new technology we see arising, but all the technology we now take for 
granted. In a way no previous generation has experienced, the presence 
of digital technology is assumed in practically all aspects of our lives. 
Unfortunately, however, there is one singular, perilous exception—the way  
we structure and arrange teaching and learning.

Perspective: 
Technology for Today’s Innovators, and Tomorrow’s  
By Chad Dorsey 

We have adapted to technology’s almost invisible ubiquity with 
breathtaking rapidity. Only a bit more than a decade ago, GPS 
was still a novelty. Most people didn’t own cell phones. CDs and 
DVDs dominated their markets, and pagers and fax machines 
were commonplace. Today, technology has changed everything. 
Well, almost everything.
 Sure, technology permeates our schools, but that fact is 
deceptive. It’s the things technology has not changed about 
education that deserve our real attention. Despite the sudden 
wave of pandemic-related Chromebook purchases and the 
whiplash turn toward Zoom instruction, the curriculum itself 
has remained practically impervious to change.
 Today’s K-12 students exist in a world utterly defined by 
computation and technology. Data is everywhere. AI is on our 
doorstep. CRISPR, quantum computing, drones, and biosensors 
are the stuff of the present. Yet most students’ textbooks and class 
syllabi could have been plucked from their grandparents’ class-
rooms. To riff on one of my favorite of Conrad Wolfram’s sayings, 
it’s time to teach school as if computers existed.
 We need to consider what it means to live and work in today’s 
technological society—and the one just around the corner, too. 
Students need the competencies and habits of mind our world 
demands. Educators must redefine the way we approach school-
ing, ensuring that perspectives reflecting our technology reality 
reinforce everything we do. 
 We’re already accomplishing some of this—promoting com-
puter science and disseminating high school data science courses, 
for instance. But we must dive deeper and not delude ourselves 
into thinking that pushing a subject slightly downward from the 
undergraduate level into high school represents success. Similarly, 
elementary or middle school goals cannot be determined by 

merely watering down lists of current workplace skills. We must 
rethink K-12 learning wholesale with our eyes on new horizons.
 A different approach is possible. Transformation is sweeping 
the workplace, and emerging professions offer an inspirational 
lens on the future. MIT Technology Review’s recent selection of 
“35 Innovators Under 35” is an object lesson. This incredible 
list’s through-the-keyhole view into the future can also stand 
as a useful template for our educational destiny.

Partnering with artificial intelligence. Today’s  
innovators are finding manifold ways that AI can solve tomorrow’s 
problems, through a diversity of applications that is truly striking.  
From solutions to climate change to machine learning-based 
solutions for pain management, novel AI designs bypass existing  
theory and practice and aim straight at the problems they can solve. 
Mining large, available pools of data, AI innovators pinpoint the 
potential for inventive, unimagined discoveries in long-neglected 
corners of science and industry. Preparing learners for a world 
in which AI is central means seeing computers and computation 
as almost equal partners with humans in navigating and solving 
problems. From elementary school onward, students should learn 
not only how computing works and how to think computation-
ally, but also gain experience identifying how computing and AI 
can serve as fundamental tools for approaching the world. Current 
research in AI education and computational thinking can help us 
pave the way to age-appropriate onramps for learning to apply AI 
to all manner of problems.

Working with DNA as a tool. Another area that begs for  
educational innovation is the burgeoning world of bioengineer-
ing. The advent of CRISPR technology and the recent proof of 
mRNA’s vast utility have fundamentally shifted our orientation 



c o n c o r d . o r g  •  v o l . 2 5  •  n o . 2  •  F a l l  2 0 2 1   3
 

toward biology—from seeing it as a set of systems to be observed 
to recognizing that it holds the active tools of our future. We need 
to help students see biology not as a series of facts but rather as a 
manipulable system. As students learn about biological processes and 
classification, they should be guided to see the mechanisms of biol-
ogy as tools that can be used to unlock secrets, and to view medical 
problems as opportunities for innovative applications of miniature 
machines and biological building blocks. This requires significant 
rethinking. We must consider how to view biology education 
wholly differently, embracing practice-focused topics that lean into 
the future as much or more than they reiterate the historical past.

Seeing with sensors, and doing with drones. We 
must also prepare learners for a future of ubiquitous sensing and 
innovative action. Operating within a world where robots can be as 
tiny as blood vessels and sensors can be constructed from biological 
components demands that students see the world as a series of  
opportunities for both exploration and manipulation. Our cur-
riculum must take for granted that the Internet of Things and 
the deluge of drones, robots, satellites, and all manner of connected 
machines now extend our hands and eyes to practically all scales 
and sites. We can monitor the entire globe from space, reach into 
the rubble of a disaster area, or bring the equivalent of miniature 
wrenches and tweezers into microscopic locations. Important new 
perspectives come along with this potential. Students should come 
to see that these tools unlock an incredible power. As soon as 
they understand how anything in the world functions—whether 
a biochemical reaction or a warehouse-scale workflow—they can 
turn around and apply their toolbox to directly manipulate that 
same process. This requires us to fundamentally rethink what 
“hands-on” learning means, and perhaps even to question the 
nature of engineering education itself.

Solving problems with data. In a future where data are 
everywhere, learners must be ready to use data as a medium, seeing 
everything around them—from music to words to photographs to 
brainwaves—as data. Learning how that data can be used to answer 
questions, shed light on the operation and interconnectedness of 
their world, and identify new problems to be solved is crucial. We 
must ensure that learners have multiple opportunities to see datasets 
as founts of original questions, so they are empowered and profi-
cient at using data as a means to action. We must help them view 
the world as a source of data that can be used to solve problems, 
expose inequities, and confront social issues head on.

Putting it all together. One of the clearest lessons from the 
innovators of today (or any age) lies in their ability to combine 
disparate ideas in a way that renders them greater than the sum of 
their parts. Whether uniting quantum computing and agriculture 
or marrying innovative polymers and circuitry to solve biological 
problems, the innovators in MIT’s lineup aren’t merely working in 
innovative fields—they’re working at the interfaces between them. 
Learners must be prepared to work within a future filled with 
technology. We must give them opportunities to merge, mix, and 
mash up their knowledge and ideas.

Bringing all of these changes about—and doing so in a way 
that ensures all learners gain rich experiences in an equitable  
fashion, no matter their grade level, background, or ZIP code—
is the true challenge of the coming decades. And though it’s 
indeed the task of a lifetime, taking the long view reveals  
that it is absolutely essential to our future, and the future of  
our children.

Learners must be 

prepared to work within 

a future filled with 

technology. We must  

give them opportunities 

to merge, mix, and mash  

up their knowledge  

and ideas.

Chad Dorsey 
(cdorsey@concord.org)  
is President and CEO of the Concord Consortium.  
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By Kirsten Daehler and Bill Finzer  
Indicators of  
Data Fluency   
What Am I Looking For?
Data is the new “it” thing of the 21st century. From guiding traffic flow to planting 
crops, informing health decisions, and shaping public policies about all manner of 
things from incarceration to employment, data is used in countless applications 
and industries. Every student needs to emerge from their K–12 education having 
extensive data experiences. Importantly, they should be able to do things with  
data—explore, visualize, find patterns, identify problems, investigate sources, think 
about the ethical use of data, and more. These are the hallmarks of data fluency.  
The Concord Consortium and WestEd are collaborating on a new project funded  
by the National Science Foundation to promote such data fluency. 

The Boosting Data Science Teaching and Learning in STEM proj-
ect is developing a framework to describe the knowledge and skills 
teachers need to promote data fluency in their classrooms. With the 
help of a cadre of co-development teachers, as well as data scientists 
and educational researchers from across the country, the project 
aims to construct a Teacher Data Fluency Framework that details 
what teachers need to know, and be able to do, to support students 
in grades 5–9 to develop data fluency in science, mathematics, and 
computer science. 
 We will use this framework to guide the design of materials for 
teacher professional learning, then study the effects on both data 
science teaching and data science learning in the classrooms of 
teachers who have participated in the professional learning experi-
ences. This four-year project will shape our answers to questions 
such as “How can teachers and students develop data fluency? What 
does data fluency look like? How do you know it when you see it?”
 What follows are preliminary indicators that help us recognize 
data fluency. While these indicators serve only as a starting point, 
they are informed by decades of work with students and teachers 
using data in mathematics, statistics, and science. We’ve become 
convinced that engaging with data in a meaningful way beyond 
the primary grades requires technology. Using technology tools, 
like our Common Online Data Analysis Platform (CODAP), can 
make it effortless to manipulate data, conduct calculations, and 
make visual representations, such as graphs. 

Data-rich classrooms
First, let’s set the stage by peeking into a data-rich classroom. In 
some cases, we see students conducting their own experiments 

to answer a question, gathering data, constructing and analyzing 
graphs, and sharing their findings and the limitations of the data. 
In other cases, students produce a survey to gather data. More than 
ever before, students are also making use of countless existing  
publicly available datasets, and engaging as practitioners, explorers, 
and discoverers in every subject area. 
 Imagine that you and your students are thinking about income 
disparities, motivated by news reports on the subject. You start 
with data from the U.S. Census Bureau’s American Community 
Survey, which is available at the click of a button through a plugin 
in CODAP (Figure 1).

 
 
 
 
 
 
 
 
 
 
    

ee Curiosity about the data is the first clue that you’re in a data-
rich classroom. Someone asks, “How has income changed since I 
was born?” or “How different are incomes for females compared 
to males?” One student comments, “My mom makes more money 
than my dad, but this data shows that men make more. Why?”

Kirsten Daehler     
(kdaehle@wested.org) is director of 
science and engineering at WestEd.

Bill Finzer      
(wfinzer@concord.org)  
is a senior scientist.

Figure 1. Census microdata with income and employment 
for 2000 and 2017. Each row represents an individual  
person. People not in the labor force have been set aside.



Figure 3. Corresponding points on a graph and rows 
on a data table.
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When students make meaning of data—for example,  
by asking questions and connecting data to its origins  
and real-world contexts, this is a sign of data fluency.

After staring at the table of raw data, your class recognizes this is 
not a very efficient way to find patterns and anomalies. Students ask 
if there are any graphs they can look at. In the past, making graphs 
using paper and pencil or even a graphing calculator often felt like 
drudgery. Access to today’s data tools changes things dramatically. 
You ask, “What would you like to make a graph of? What kind of 
graph might help us answer your question about income differences 
between females and males?” A student suggests comparing two 
graphs—income of females and income of males (Figure 2).

When students know how (and when) to transform  
data and do something with the data to answer a  
question—for example, by making graphs or other  
visual representations to reveal meaning from the  
data, this is a sign of data fluency.

Somewhat surprisingly, in our work with data, we have found 
that one of the most helpful and revealing questions to ask is 
“What does this point (on a graph) or row (on a table) represent?” 
The answer may be a person, a measurement, an experiment,  
a year, or a f ield site. Answers to this question often reveal a  
person’s understanding of the data.
 Knowing this, you drill deeper into the student’s observation 
about their mother making more than their father by asking, 
“What does each point in this graph represent? Can you find a 
pair of data on the graphs that ref lects this real-life scenario?” As 
students call out data points, you click on the point in the graph 
and CODAP simultaneously highlights the corresponding row 
(or case) in the data table (Figure 3).

When students can identify connections across  
data representations—for example, by describing  
that a row in a data table corresponds to a point  
in the graph, this is yet another sign of data fluency.

There is much more students can do with the census data to 
begin to answer their questions. You explain that data is used to 
model things, usually something in the world. What we choose 
to record ref lects both our understanding of it and the goals of 
our investigation. For example, a dataset of people with age, sex, 
employment status, hours worked, weeks worked, and income 
can be seen as a model for understanding wage inequality. In 
this way, a data table appears as a rectangle with six columns 
and hundreds or thousands of rows. We think of this rectangle 
as a f lat model. However, in this situation we can better explore 
questions about changes over time by creating a “hierarchical 
representation” in which we create one group for each of two 
years (Figure 4). 
 You say, “Let’s go back to our first graph of income inequal-
ity from 2017, the most recent year available in the census data.” 
Then you describe how you made the graph comparing female 
and male incomes in 2017, by filtering out data about people’s 
income in the earlier years.
 Next, you ask students to work in pairs to figure out what 
they can do with and to the data to answer other questions, such 
as “What’s the trend of income inequality over time? Is the gap 
getting bigger, smaller, or staying about the same?”
 When one group calculates the median incomes by writing a for-
mula, they learn that the gap is about $12,000 in both 2000 and 2017.
 Seeing this graph, another student asks, “Is there really 
no change?” You suggest, “What about looking at the gap as a 
percentage of female income?” With this new challenge, students 
return to the data and make new graphs (Figure 5).
 Excitedly, one group exclaims, “The wage gap is going down. 
Look at this. In 2000 men earned about 68% more than women, 
but that gap decreased to 43% in 2017.” 

When students know how (and when) to manipulate  
the data to answer a question and do multiple  
things to the data—for example, by making “data  
moves” such as filtering, grouping, summarizing,  
calculating, merging/joining or making hierarchies,  
this is a good sign of data fluency.

Figure 2. Graph of male income versus female income 
from 2017 census data, with median income shown as 
a red line.

(continued on p. 6)



Data fluency prepares learners for the future
We hope that this glimpse into a data-rich classroom offers clues 
about how to boost data f luency and prepare students for lives in 
which they make use of data to solve problems and make discov-
eries. When teachers instill curiosity and excitement about data 
in their classrooms, they open the door to students’ willingness 
to ask questions, try new things, think differently, and be bold 
when using data. Data fluency is an essential 21st century skill.
 We invite you to follow our progress and to share your own 
classroom stories and questions about data f luency. 

6 c o n c o r d . o r g  •  v o l . 2 5  •  n o . 2  •  F a l l  2 0 2 1

(continued from p. 5)

 

Common Online  
Data Analysis Platform

The Next Generation Science Standards 

(NGSS) and the Common Core State 

Standards (CCSS) for mathematics both 

emphasize the importance of analyzing 

and interpreting data. CODAP is free, 

intuitive, web-based software designed 

for students in grades 5 through college 

to visualize and analyze data. Data from 

public datasets, experiments, simulations, 

and more can be imported easily into 

CODAP for in-depth exploration. A 

growing suite of tools and plugins 

allows users to make their own “data 

moves” to group or filter data, calculate 

new variables and summary measures, 

merge datasets, and more. All data 

representations are dynamically linked in 

CODAP, so that highlighting a data point 

in the graph, for example, highlights the 

same data in a table and a map. 

We invite you to build your own data 

fluency and explore CODAP at  

codap.concord.org. Click “Open 

document or browse examples” and select 

“Getting started with CODAP.” 

Continue your data exploration journey 

with additional tutorials, classroom 

activities, and discussion forums at: 

codap.concord.org/for-educators

Figure 4. Rearranging data rows to show a hierarchical  
representation for 2000 and 2017.

Figure 5. Graph of sex versus income-wages for 2017 and 
2000 with the difference between incomes calculated as a 
percentage of the median wage for females (and annotated 
in CODAP using the draw tool).
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Monday’s Lesson:  

Determine Stream Health
By Carolyn Staudt, Tara Muenz, and David Kline

Carolyn Staudt     
(cstaudt@concord.org)  
is a senior scientist.

Tara Muenz    
(tmuenz@stroudcenter.org)  
is the Leaf Pack Network  
Administrator at Stroud Water  
Research Center. 

David Kline    
(dkline@stroudcenter.org)  
is a watershed educator at  
Stroud Water Research Center.

Fresh water scientists use several factors to determine the health 
of a stream, including the chemical and physical qualities of the 
water as well as the number and types of organisms that live below 
the water’s surface. In this activity, you determine the health of a 
virtual stream by making observations about habitat, identifying and 
counting macroinvertebrates, and performing chemical tests. 

Select a study stream
Go to https://leaf-pack.concord.org/

Select a stream by clicking one of the stream models (A, B, C, or D)  
at the top of the simulation. Notice the different features of each 
stream site and pick one that looks similar to a stream near you.

Describe the habitat     
The habitat or area around the stream has 
a big impact on the stream’s health.

1  Use the Stream Habitat Key to identify  
habitat features in the stream, and select the  
box next to each feature you see in the  
image (e.g., pools, riffles, trees, pavement, etc.). 

2  Click page 2 of the Habitat tab and continue 
to mark stream features you observe. 

Identify macroinvertebrates      
Certain aquatic macroinvertebrates are sensitive to pollution, while 
others are quite tolerant, so they are good indicators of stream health. 
To collect macroinvertebrates, scientists place packs of leaves in a 
stream, then collect them to see what’s feeding and living on the 
leaves. Each virtual stream contains a leaf pack.

1  Set the number of sunny days in the bottom bar of the simula-
tion (few/many), then click Start. It will run for a simulated 
three weeks until a Leaf Pack Sorting Tray appears.

2  Click the Macroinvertebrates tab to sort and identify the macro-
invertebrates. Click and drag all the leaves to a corner of the tray. 
Now click an organism, then drag and drop it into the correct 
box on pages 1-3 of the Macroinvertebrates tab to identify it. If 
the sorting is accurate, the organism remains in the box and a 
count appears for the total number of this type found. If not,  
the organism reappears in the sorting tray. Optional: Use a  
dichotomous key to identify the organisms (stroudcenter.org/ 
wp-content/uploads/StroudWebsiteMacroKeyFNL.pdf ).

3  After identifying all the organisms, click page 4 to see the  
calculated Pollution Tolerance Index (PTI) from the stream’s 
biotic factors and the stream’s health rating.

4  Close the sorting tray to observe the changes in the numbers  
and types of observable organisms in the study stream image.

Test water chemistry      

1  Click the Chemistry tab to run chemical and physical tests  
on a water sample. 

2 Follow the directions for each test. 

3  Select the number for each test in the bottom menu bar and 
click each step to watch the animated test. The results record 
automatically on the Home page.

4  For tests with a color comparator (pH, Nitrate, Dissolved 
Oxygen), use the slider to match the color of the sample to the 
color chart. (Note: Be sure to select the best color match for 
accurate results. The simulation does not check the accuracy 
of the results.)

Determine stream health      
Review the results from each tab. Are they all the same (poor, fair, 
good, or excellent)? How healthy is your stream? What makes the 
stream healthy or unhealthy? Test another stream’s health or com-
plete a study on the same stream and change the number of sunny 
days to compare results.

L I N K S

WATERS − concord.org/waters 
Leaf Pack Network − leafpacknetwork.org/ 

 

Stream  
Habitat  

Type
Symbol
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From increasingly autonomous self-driving cars to climate change models, Artificial Intelligence (AI) has become a 

ubiquitous medium for understanding, explaining, and interacting with the world around us. However, opportunities 

to study AI at the pre-college level, if available at all, are limited to computer science classes. And yet many schools 

do not offer CS. This means that many students simply write off a future in AI because they aren’t “math people” or 

don’t think they can learn how to code. Our Narrative Modeling with StoryQ project aims to integrate AI into existing 

disciplinary studies such as English Language Arts (ELA) in order to prepare youth for the future. 

Among many literary genres that students encounter in high 
school, poetry presents a unique opportunity for integrating 
AI education. Because public domain poetry texts are widely 
available and far shorter than novels, they make great candidates 
for introducing machine learning techniques in the ELA cur-
riculum. In their 2016 paper for the International Conference on 
Computational Linguistics, Manex Agirrezabala, Iñaki Alegria, 
and Mans Hulden* apply Natural Language Processing (NLP) 
techniques to a selection of poetry in an attempt to identify its 
meter—the underlying rhythm expressed through stressed and 
unstressed syllables. They acknowledge that “while the rhythm in 
most line [sic] encountered in a work of poetry appears mundanely 
repetitive on the surface, poetry, while mostly a constrained literary 
form, is prone to unexpected deviations of such standard patterns.” 
It is this continual setup and subversion of literary expectations that 
makes meter an ideal playspace for machine learning and provides 
an opportunity to teach AI fundamentals in the English classroom. 

Identifying iambic meter
We designed a weeklong StoryQ curriculum module around iambic 
meter, the metrical mainstay popularized by Shakespeare and reflec-
tive of natural speech patterns in English. Teaching meter to students 
is a complex process, especially when the goal is to develop compe-
tence in both writing and reading poetry. Students must develop a 
collection of related skills: identifying syllables in words, understand-
ing and labeling different units of meter (e.g., feet and terms for line 
length), and connecting these patterns with the poem’s meaning. 
While building these skills can feel tedious and time-consuming,  
we believe that learning how to train machine learning models  
to identify the nuances of meter will engage students. 

Explaining meter and scansion
In “The Bardic Bot: Training AI to Recognize Poetic Meters,” 
we first introduce essential concepts of meter and line scanning 
using a glossary of important terms, including meter, scansion, 

syllabification, and stressed and unstressed syllables. Students then 
identify the stress patterns of words as a group, and ultimately 
perform scansion on lines of poetry to identify its meter. They 
visit the University of Virginia’s For Better for Verse web-based 
learning tool to explore the meter of an entire poem, and receive 
automated feedback on their scansion and insight into how meter 
might affect the poem’s meaning (Figure 1).

Alien language activity
Once students become acquainted with meter, we turn to basic 
concepts of machine learning, again beginning with a glossary 
approach, reviewing terms like machine learning, artificial intelli-
gence, feature, and target concept. To bridge the concepts of scansion 
with AI, we begin with an assignment that works with patterns 
of stressed and unstressed syllables rather than whole words to 
explore how a computer might identify patterns in meter without 
knowing the words intrinsically. Students are presented with the 
following scenario: 
 The people of Earth have been visited by an alien race! They seem 
to mean no harm, but humans have been unable to understand their 
language. However, it seems that they are a community of performers  
and artists because the words coming out of their mouths sound a lot like 
poetry. Specifically, there are patterns in their language that sound similar 
to the stressed and unstressed syllables in our own speech. Shakespeare’s 
Globe Theatre, the preservation society for William Shakespeare’s 
literature and legacy, has commissioned you to see just how “poetic” their 
speech really is. They want you to identify whether or not their language 
is in iambic pentameter as the ultimate test of their prosody.

Training the model using StoryQ
Students look at the stressed and unstressed syllables in the alien 
language and decide the likelihood that they are in iambic pen-
tameter, comparing them to annotations we provide. Students 
consider how a computer might process this data, and teachers 
can scaffold the discussion with four features developed by  
the StoryQ team:

The Bardic Bot:  
Integrating AI and ELA Education via Poetic Meter  

Duncan Culbreth     
(culbreth.duncan@gmail.com) is a doctoral student in the Learning 
Design and Technology program at North Carolina State University.

Jie Chao     
(jchao@concord.org)  
is a learning scientist.

By Duncan Culbreth and Jie Chao
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StoryQ  
concord.org/storyq 

Figure 1. The For Better for Verse online learning tool gives 
automated feedback on scansion. The stress markers are placed 
above the lines, and the foot separations (shown as uprights) are 
placed in them. 

Figure 2. A dataset of 30 alien 
scansions that have been  
labeled by a machine learning 
algorithm via the StoryQ app. 

1  Does the line have four to six iambs? Since the iamb (U/)  
is the fundamental unit for this target concept, this feature 
detects if it has a count that is within a range of five  
(hence, pentameter).

2  Does the line have one or more anapests? An anapest (UU/)  
is one of the two three-syllable feet.

3  Does the line have one or more dactyls? A dactyl (/UU) is  
the other three-syllable foot, arguably the least like an iamb.

4  Does the line have two or more pyrrhics? A pyrrhic (UU)  
typically is relatively uncommon in formal poetry.  
Nevertheless, it is also counted here.

 Because AI is fundamentally about computers finding patterns 
in data, students now develop and train a machine learning model 
in our StoryQ app, which is a plugin for our Common Online 
Data Analysis Platform (CODAP). They are given the scansion 
patterns and the above four features, and are walked through the 
basic steps of training and testing machine learning. The model 
then reviews each datum and labels each of the four features or 
“attributes” (columns in the data table) as true or false.
 Using the StoryQ app, the model produces several visualiza-
tions (Figure 2). Panel 1 shows the original scansion data and 
the four features that are used to judge it, the true/false label 
that the model proposed for each datum, and the probability 
that datum is in iambic pentameter, which triggers the true/false 
label. Panel 2 displays the four features that make up the model 
and how strongly each figure might affect the true/false label 
(known as “weight”), which is also visualized by the scatter 
plot in panel 5. Panel 3 shows how the model applied a predic-
tive label to a single datum (in this case, line 10 of the dataset in 
Panel 1) by showing the features and their given weights, which 
resulted in a “true” label (three of the four are shown; the fourth 
was also calculated, though cannot be seen here). Panel 4 shows 

a computation matrix, displaying what proportion of the data 
was correctly labeled. In this case, the accuracy was good, with 
100% of the actual iambic pentameter lines labeled as such, and 
an overall model accuracy of 80%. This means that the chosen 
features could be useful. The teacher then challenges students 
to imagine other features that might also produce an accurate 
model like this one.

Conclusion
The Bardic Bot merges skill development in scansion and basic 
machine learning concepts and paves the way for further analysis 
on real lines of poetry using NLP. The goal of the curriculum is 
to scaffold text analytics for ELA students, so they learn to under-
stand and appreciate both poetry and AI. We hope that students 
also learn that while machine learning is quite successful overall, 
at times it fails to scan the text correctly. Artificial intelligence 
is a powerful, if fallible, extension of human intelligence, rather 
than a replacement for it. 
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*  Agirrezabal, M., Alegria, I., & Hulden, M. (2016, December). Machine learning 
for metrical analysis of English poetry. In Proceedings of COLING 2016, the 
26th International Conference on Computational Linguistics: Technical Papers 
(pp. 772-781). 
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Reform efforts in science education frequently focus on increasing diversity and promoting access 
to canonical science understandings and practices. However, central to the need for these equity 
efforts is the widespread, systemic unfairness that permeates our society, including in the nation’s 
classrooms. Historically, science class, like science in general, has not been effective in welcoming 
the viewpoints and cultures of minoritized students, who as a result often do not see themselves as 
belonging in science, even when they perform well on standardized science tests. As a result, people 
of color remain severely underrepresented in higher level science courses and science fields. The 
Bio4Community project’s new curriculum approaches and pedagogies hope to disrupt this pattern.

By Frieda Reichsman and Sarah Haavind

Partnering with Seventh Graders to Design  

A Community-based Life Science 
Curriculum Unit

Research on supporting minoritized youths’ identity development 
in science points to the need to design curriculum that centers 
youths’ lives in their communities as integral to their science 
learning. Such youth-centered curriculum should focus on how 
youth experience and embody science in their everyday lives and 
how those experiences align to rigorous science standards, such as 
the Next Generation Science Standards (NGSS). Understanding 
how the teaching and learning of science can foster youths’ agency 
in using science knowledge and practices to make their lives bet-
ter is as important as students’ successful performance on typical 
measures of school science success. 
 The Bio4Community project, funded by the National Science 
Foundation, is a partnership between researchers from Rutgers 
University and the University of North Carolina at Greensboro and 
curriculum design and technology experts at the Concord Consor-
tium. We are collaborating with middle school youth and science 
teachers from two predominantly Latinx middle schools in New 
Brunswick, New Jersey, to design a curricular unit in life science. 
Our goal is to support student achievement while intentionally 
making space for them to belong in science. The unit will help 
students achieve mastery towards NGSS practices, crosscutting con-
cepts, and disciplinary core ideas in life science, and enable students 
to use science to address health concerns that affect their lives and 
the lives of people in their community. 

Curriculum co-development
In building the project’s Design Team, we included students with a 
shared concern for health issues and their community, rather than 
selecting students on measures of academic merit. Two teachers from 
two New Brunswick middle schools recruited eight 7th grade 
students to participate. From spring through early summer 2021 we 
met bimonthly over Zoom to identify a relevant health concern in  
the community. We will continue to meet throughout the fall. 

 Given the potential power dynamics between adult researchers 
and young students, we worked to create a trusting and collaborative 
environment. We tried several different interactive media, looking for 
one in which the young people were comfortable sharing their think-
ing about health with us. We adopted Discord, a popular place for 
young people to hang out online and share voice, video, and text. So 
in addition to Zoom for real-time meetings, we use Discord to post 
announcements and foster informal discussions. We also use Padlet, an 
online bulletin board where we select from relevant images, paste our 
own images, and use text to make comments or explain ideas. Finally, 
we welcome everyone to each Zoom meeting with music from a 
playlist that includes their contributions, and we use an emoji chart to 
check in at the beginning and end of each session (Figure 1).  

Frieda Reichsman  
(freichsman@concord.org)  
is a senior research scientist.

Sarah Haavind  
(shaavind@concord.org)  
is a senior research project manager.

Figure 1. Students select from an emoji chart to share their feelings. 
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Figure 2. Results from a community health survey 
analyzed in CODAP.

Figure 3. Students shared images and thoughts 
about emerging themes related to stress and 
depression in the community.

Community health survey 
The Design Team collaboratively created an online survey for New 
Brunswick students, faculty, parents, and community members about 
a variety of health topics. After pilot testing many of the survey ques-
tions in students’ classes, we revised the survey together, and shared 
it with the two school communities in both English and Spanish. 
We received 488 responses and used our Common Online Data 
Analysis Platform (CODAP) to analyze the results and identify 
prominent health concerns. 
 The results indicated five primary community health issues, 
including asthma, depression, diabetes, stress, lead in the environ-
ment, as well as other issues (Figure 2). We noted that stress and 
depression might be connected, so we chose to focus on those two 
issues. Using Padlet, the Design Team then organized ideas,  
images, and comments about these health concerns (Figure 
3). Not surprisingly, the loss of family members, including to 
COVID, came up, as did issues related to the pandemic-induced 
quarantine. We also viewed and discussed short videos related to 
challenges in the community, such as poverty and health dispari-
ties. These activities serve as background for our current work to 
convene a group of New Brunswick community experts on health 
and community challenges as we turn our focus to designing a 
classroom curriculum on the science related to these issues. 

The biology of stress
Together with participating teachers and students, we will co-design 
a curriculum unit that addresses stress in relation to several aspects of 
two NGSS disciplinary core ideas: LS1 From Molecules to Organ-
isms: Structures and Processes and LS3 Heredity: Inheritance and 
Variation in Traits. The five-week unit will include the biological 
mechanisms of stress with a focus on long-term or chronic stressors 
and their effects. It will address a number of questions: How does 
stress affect human physiological function? Do youth react different-
ly than older people to stress? How does a response that is beneficial 
in the short run become unhealthy over time, and what types of 
health problems result?
 One way to bolster the ability of minoritized students to create 
an authentic identity in science is to ensure they have opportunities 
to engage in rigorous scientific investigations on issues that matter  
to them and their communities. Project software and curricular 
materials will support student investigation of the biological basis 
of environmental (social and physical) stressors as causes of chronic 
stress. Students will explore the presence or absence of environmen-
tal stressors, for example, racism and the lack of availability of healthy 
food. Students will also design real-world solutions addressing prob-
lems they identify, either via engineered technology (e.g., meditation 
booths in school) or social policy (e.g., making recommendations to 
the school regarding homework or recess policies that can reduce 
student stress). 

Next steps
Creating science curricula that foster positive science identities for 
minoritized students is essential to encourage underrepresented 
groups to enter the sciences. We hypothesize that the experience 
of investigating relevant local problems will help students see the 
power of science in benefitting their communities and see them-
selves as able to use science knowledge and practices for social good.

L I N K S

Bio4 Community  
concord.org/bio4community 
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SageModeler 
Offers Two System Modeling Approaches

Steve Roderick    
(sroderick@concord.org)  
is a curriculum developer.

Dan Damelin     
(ddamelin@concord.org)  
is a senior scientist.

From Earth’s systems to ecosystems to systems in our human bodies, the world is made of 

interconnected components. Using computational models to represent complex systems can 

greatly enhance our understanding of how systems work. Students can test their understanding 

of a system’s complexity by sketching its structure, defining the connections within it, and 

running the model to see if system outputs match the real world. By comparing a model’s 

output to observations from the real world, students can iteratively revise both their conceptual 

models and computational models. SageModeler offers two approaches to computational system 

modeling that make it a powerful learning tool for students from upper elementary through high 

school to build, revise, test, and share their models and their understanding. 

Static equilibrium models
In SageModeler, static equilibrium models are used to represent 
systems that are inherently stable or can be simplified such that the 
state of the system is defined by the combination of inputs to that 
system. They help answer questions of how a change in one part  
of a system can cause a change in another. 
 Imagine that you want to create a model to help you determine 
how bad an epidemic will be based on several factors. In a static  
equilibrium approach, you first identify the elements of the system  
affecting the number of people who get infected, then define how 
each variable affects the others. The combination of susceptible 
people, infectivity of the virus, and infectious contacts behave similar 
to an algebraic equation, where a change to one variable causes all 

other variables to respond as defined by the relationship rules among 
them (Figure 1). With each change of an independent variable, the 
entire system immediately adjusts to a new static and stable “state.”
 In Figure 1 when # of people contacted each day is increased, a 
new state of the system is determined by combining this new input 
value with the other variables in the system, increasing the number of 
infected people. Each system state results from the set of relationships 
among the system components, and an adjustment to any of them 
causes the system to instantaneously reach a new equilibrium. 
Imagine taking a photograph of the population at one point in 
time, increasing the number of contacts, and taking another photo-
graph. By comparing the pictures, you can analyze the effect of # of 
people contacted each day on number of infected people.

By Dan Damelin  
and Steve Roderick

Figure 1.  (a) Modeling the outcome of an epidemic. (b) During 
simulation bar graphs represent the value of each variable.

Figure 2. Broadening the epidemic model to include mitigating 
factors like social distancing, masking, and a vaccination program.

a. b.
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 Static equilibrium models can be simple or built out indefinitely. 
For example, we can expand the epidemic model to include variables 
representing mitigating factors for controlling the epidemic (Figure 
2), or expand the boundaries further to consider economic and social 
impacts. Alternatively, we could include how the virus infects and 
reproduces at the molecular level.

Dynamic time-based models
Like static equilibrium models, dynamic time-based models in Sage-
Modeler represent variables and connections, but with one important 
additional feature: the ability to represent change over time. 
 Let’s revisit the epidemic example. Rather than modeling the 
overall severity of the epidemic, we may want to model how many 
people will get sick as the epidemic unfolds over time. This was 
particularly important during the COVID-19 pandemic in order 
to plan for expanding hospital capacity and to decide when to ease 
lockdown conditions. 
 To see an evolution of the model state over time, dynamic models 
include new kinds of variables—collectors, which can be added to 
or subtracted from during each model calculation cycle, and flows, 
which define the rate of change in the collectors (how much is added 
to or subtracted from the collectors each cycle). 
 In Figure 3, the # of susceptible people is a collector, as is the total 
number of infected people variable. The number of people infected per day 
variable represents how many people become sick during each cycle 
of the model, causing that number to be subtracted from the # of  
susceptible people and added to the total number of infected people. This 
flow, represented as a valve, controls the rate of transfer between the 
two collectors. Other variables like chance of contact being infectious, 
infectivity of disease, and # of susceptible people all affect the number of 
people infected per day. Over time the # of susceptible people decreases 
and the total number of infected people increases. However, we can see 
the number of people infected per day starts high and slows down over 
time (Figure 3b), due to the fact that there are fewer and fewer sus-
ceptible people over time to get infected.

 Because collectors can only be added to or subtracted from, they 
have a “memory” of the system’s state. As such, collectors make 
it possible for dynamic time-based models to show how feedback 
causes the system to influence itself. When chains of causal con-
nections loop back upon themselves, the state of a system at one 
moment can provide the impetus for change into the next. In such 
a feedback loop, the computer first determines the model state at a 
given moment by noting the values of all the collectors. These values 
influence other system variables based on relationship rules that have 
been set by the student, and eventually, through a chain of cause-
and-effect relationships, loop back to influence a variable that is 
directly connected to the collector that initiated the loop. 
 In Figure 4, an additional relationship has been defined between 
the total number of infected people and chance of contact being infectious. 
This connects to number of people infected per day and back to total 
number of infected people. Notice how the number of people infected 
per day more correctly shows the pattern we observed in the real 
world, when infections start slowly, reach a peak, and then taper off.
 
What type of model should be used?
Before deciding on the modeling approach, it is critical to clarify 
the model’s purpose. Ask yourself, “What do I want my students 
to learn by building this model?” If the priority is to analyze the 
structure and interconnection among components in a complicated 
system and how a change to a system input affects other system 
components, static equilibrium modeling may be best. 
 If it is important to investigate why a particular behavior over 
time is observed or how a change to a variable alters the way a 
system develops over time, dynamic time-based modeling is the 
way to go. Dynamic time-based models allow students to explore 
feedback-induced behavioral patterns like exponential growth, 
growth (or decline) to a limit, S-shaped growth, and oscillations. 
 Both modeling approaches in SageModeler offer students the ability 
to test their understanding of the system as a whole. Building, revising, 
and sharing models provides powerful learning opportunities.

L I N K S

SageModeler   
sagemodeler.concord.org

To see more models, including a population  
model with feedback loops, and links to the models  
featured here, see the online version of this article at  
https://concord.org/newsletter/2021-fall/sagemodeler- 
offers-two-system-modeling-approaches

Figure 4. Feedback is added to the system by 
connecting the total number of infected people to the 
chance of contact being infectious variable, completing 
a loop with the number of people infected per day.

Figure 3. (a) Dynamic time-based model of a collection of susceptible 
people becoming infected over time. (b) When the model is run, line 
graphs show the values of each variable over time.

a. b.
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Under the Hood:
Three New CODAP Plugins

Our Common Online Data Analysis Platform (CODAP) is both powerful and flexible. 

Powerful because it makes data analysis and visualization intuitive. Flexible because it’s 

easy to add plugins to its web-based interface. In CODAP, plugins can be a source of data 

or a set of instructions. Importantly, plugins can also receive information from CODAP. 

Communication goes both ways. With a bit of JavaScript coding, you can create your  

own plugin and drop it into CODAP where it appears as an iFrame.

Thanks to partner collaborations, CODAP has dozens of plugins. Several have proven so 

useful they’re built right into the CODAP Plugins menu. We’re excited to announce three  

new plugins that have recently been embedded directly within CODAP.

By Bill Finzer 

L I N K S

CODAP  
codap.concord.org/   

CODAP Data Interactives Plugins   
concord-consortium.github.io/ 
codap-data-interactives/  

Getting Started with CODAP Plugins   
github.com/concord-consortium/codap/wiki/
Getting-Started-With-CODAP-Plugins   

CODAP Help Forum   
codap.concord.org/forums/    

Bill Finzer    
(wfinzer@concord.org)  
is a senior scientist.

Story Builder
In our Writing Data Stories project with 
Michelle Wilkerson at the University 
of California Berkeley, we’re helping 
middle school students become “data 
storytellers,” using data as a medium to 
express their understanding of important 
socio-scientific issues. The prototype for 
the Story Builder plugin was initially 
designed by colleague Tim Erickson, and 
I was excited to complete it. Students 
can build story “moments,” with each 
interactive moment capturing the state of 
the CODAP document at a given time. 
Since CODAP can also embed web pages 
and videos, a story can be truly multime-
dia. Moments can be edited, deleted, and 
rearranged, or “locked” to prevent being 
accidentally changed. Stories are great for 
student projects and presentations, intro-
ductions to data-rich content, and even 
mockups of new plugin capabilities. 

Choosy
Some of the datasets in the Writing Data 
Stories project include tens of thousands  
of cases and over one hundred attributes— 
way too big and complicated for middle 
schoolers! So Tim Erickson developed 
Choosy as a fast and efficient tool for cur-
riculum developers or teachers who need  
to create simple datasets from complex ones. 
Teachers can hide attributes quickly and in 
bulk, or tag cases to set aside or delete.

Transformers
The Bootstrap project wanted to feature 
data moves more prominently for their 
curriculum resources that use CODAP, so 
they created this plugin with 30 transfor-
mations. It’s now even easier to filter and 
sort attributes, and to measure, aggre-
gate, and summarize data, among many 
other transformations. Users can transform 
datasets to produce new, distinct output 
datasets without modifying the original 
input dataset itself, thus enabling easy “what 
if ” exploration and comparison of datasets 
that may represent distinct transformations 
performed on the same source dataset.
 These three new plugins take advantage of 
recent enhancements to CODAP’s applica-
tion programming interface (API), including:

•  Ask CODAP for the current state  
of the document.

•  Pass a new document state to CODAP 
for it to adopt.

•  Pass a formula to CODAP and get  
back the result.

•  Ask CODAP to open a new and  
different plugin.

•   Ask CODAP to create a case card. 

Interested in trying more CODAP  
plugins? Check out the CODAP Data 
Interactive Plugins site. Want to build your 
own? See Getting Started with CODAP 
Plugins for step-by-step instructions.  
Contact us with questions on the CODAP 
Help Forum.
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The Rothermel equation, which describes the rate of fire spread, has been used in fire 
management systems since the 1970s.* It continues to inspire Chris as a curriculum designer.
 “Science is a lot of failure,” reflects Chris, thinking about his master’s thesis at 
Rensselaer Polytechnic Institute (RPI). He laughs, “I didn’t have great success most 
of my time there.” His research focused on the geochemistry of element diffusion 
in the Earth’s crust. “Knowing the conditions like pressure and temperature that a 
rock formed in can be useful for many applications.” His goal was to investigate the 
mineral tourmaline for its use in recording and preserving the conditions of pressure, 
temperature, and the composition of fluid in which it formed. 
 It took Chris a semester before he successfully grew tourmaline in the lab. “It was 
beautiful under the microscope,” he reports. So the next step was devastating: crushing 
the gemstone he’d worked so hard to create into a powder! He was able to use the 
powdered form enriched in 10B (the less abundant isotope of boron) as a marker, then 
simulate the heat and pressure conditions of the Earth’s crust to see how far the 10B 
diffused. Finally, he could calculate the diffusion rate. 
 Recognizing how much work it was to get that one number, Chris appreciates 
firsthand the many ideas, and experimental failures, Rothermel must have had to reach 
a single wildfire spread number. “The process of science can be really frustrating,” he 
admits, “but the rewards are exciting.” Chris hopes to infuse that excitement in the 
geoscience curriculum he helps design. 
 Rothermel’s equation (which has been refined over the years, thanks to more 
sophisticated computer modeling) is used as the calculation engine behind our Wildfire 
Explorer model as part of our GeoHazard project. Students can run their own wildfire 
experiments, constraining one variable—terrain, drought levels, vegetation, wind 
speed, and wind direction—at a time.
 “Such open-ended models give students a lot of space to explore,” explains Chris, 
though he acknowledges that it can be difficult to get them to buy into the scientific 
process. He wants students to know there is always more to do: reflect on the results, 
ask additional questions, experiment, and start the cycle again. When teachers report 
their students’ “aha” moments, Chris knows that he’s been able to make complicated 
concepts accessible.
 Chris had his own “aha” during a field methods course as a freshman 
environmental science major at RPI. During a field trip to the Bennington Bypass 
at the border of New York and Vermont, he saw a huge metamorphic rock cut with 
horizontal rock layers that suddenly and dramatically curved straight up. Awestruck 
by the beautiful outcrop, he changed his major to geology. “Every rock tells a story,” 
he says, “what it is, why it’s where it is, and much more.” Chris now helps students 
learn that history in the TecRocks project, which connects rock formation to the 
environments and processes that generate them through an interactive 3D model. 
 A more recent road trip, this one across the country to relocate to Vancouver, 
expanded his perspective even more about both the importance of geohazard education 
and the scale of geology. Growing up in the Northeast, he wasn’t familiar with 
wildfires, so the constant road signs reminding motorists about fire risks—“If you see  
a fire, report a fire”—surprised him. 
 “Geology is all around us all the time,” Chris muses. Indeed, he can now see the 
coastal Canadian North Shore Mountains from his window, and he can’t wait to start 
uncovering their stories.

“It was beautiful under the 
microscope,” he reports. 
So the next step was 
devastating: crushing the 
gemstone he’d worked so 
hard to create into a powder!

Bill Finzer    
(wfinzer@concord.org)  
is a senior scientist.

*  Rothermel, R. C. (1972). A mathematical model for predicting fire spread in wildland fuels. USDA 
Forest Service Research Paper INT-115. Ogden, UT: U.S. Department of Agriculture, Intermountain 
Forest and Range Experiment Station.  



MothEd
The goal of a new National Science Foundation (NSF)-funded 
collaboration between the Concord Consortium and Michigan 
State University is to understand how learning experiences and 
environments can support young students’ participation in  
authentic science investigations. With practicing teachers, we 
are co-designing experiences for elementary and middle school 
students to engage in real-world scientific practices and investiga-
tions on local moth ecology. Students work individually and in small 
groups to construct moth traps and collect data through processes 
they design and enact. In partnership with entomologists and science 
educators, students develop and answer questions about local  
ecological conditions and become genuine producers of knowl-
edge—epistemic agents—within science learning communities. 
We are studying features and approaches to the co-design of  
learning opportunities that foster student agency and identifying 
the ways in which teachers and students negotiate new roles in 
authentic science investigations.

Boosting Data Science
Boosting Data Science Teaching and Learning in STEM, a partner-
ship between WestEd, the Concord Consortium, and Heller Research 
Associates, is researching the knowledge and skills middle school 
teachers need to support students in developing data fluency and help 
them overcome common roadblocks. We are developing a framework 
of pedagogical content knowledge for data fluency in middle school 
that details what teachers need to know and be able to do to support 
students in becoming data fluent. With a team of co-design teachers, 
data scientists, and educational specialists, we will use the framework to 
guide the design of professional learning experiences that include our 
Common Online Data Analysis Platform (CODAP) for teachers to 
learn about data science and develop resources for their students. This 
NSF-funded project will study the effects on both data science teach-
ing and data science learning in the classrooms of teachers who have 
participated in the professional learning experiences. 

Precipitating Change 
The new NSF-funded Precipitating Change with Alaskan and 
Hawaiian Schools: Bridging Indigenous and Western Science 
While Modeling Mitigation of Coastal Erosion project supports 
Earth science learning from both Indigenous knowledge and 

Western-style inquiry. In a coastal erosion curriculum unit that 
bridges Indigenous and Western science, middle school students 
apply integrated Earth science, mathematics, and computational 
thinking. The curriculum is designed with Universal Design for 
Learning principles, including a multiple-representation glossary, 
translations for Indigenous languages, and scaffolding to assist 
students in understanding Indigenous and Western science terms. 
Project research studies how the approach prepares students to study 
and address socio-scientific issues.

M2Studio
The Common Core State Standards for Mathematics includes “Model 
with mathematics” as one of the mathematical practice standards, and 
notes that students should be engaged in math modeling throughout 
their education. But moving between the real-world domain and the 
mathematical domain can be challenging. A new NSF-funded project 
at the Concord Consortium, Clarkson University, and Pennsylvania 
State University aims to cultivate mathematical modeling compe-
tencies among secondary students by developing and researching 
M2Studio, a web-based, integrated math modeling environment. In 
M2Studio, students document their thought processes, uncover and 
test their explicit and implicit assumptions, and evaluate their solutions 
against real-world data. M2Studio unites our CODAP data analysis 
and visualization tool with our SageModeler system modeling tool  
to support student-generated representations of assumptions, variables, 
and relationships that are dynamically linked. 

FABLES
With WestEd and the University of California Berkeley’s Lawrence 
Hall of Science, the new Formative Assessment Bundling Literacy 
and Elementary Science in the NGSS (FABLES) project is develop-
ing and piloting a set of classroom-based assessment resources with 
accompanying professional learning to support early grades teach-
ers in monitoring and enhancing students’ integrated science and 
literacy learning. FABLES will include a suite of innovative Next 
Generation Science Standards-aligned assessment tasks, rubrics for 
interpreting student performance, teacher practice guides for engag-
ing in classroom instruction that is informed by student learning, 
and professional learning for teachers. This Institute of Education 
Science (IES)-funded project aims to help teachers envision what 
evidence of NGSS learning “looks like” with an additional lens  
on assessing literacy in the context of STEM.
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The Concord Consortium is happy to announce five new projects.


