
acm Inroads • inroads.acm.org  33

CONTRIBUTED ARTICLESARTICLES

By Kenia Wiedemann, The Concord Consortium, Jie Chao, The Concord Consortium,
Benjamin Galluzzo, Clarkson University and Eric Simoneau, Boston Latin School

Mathematical
Modeling with R:
Embedding
Computational
Thinking into High
School Math Classes

Mathematical modeling is routinely used to represent,
analyze, and simulate natural and human-made

systems. Job ads frequently require computational
thinking skills, and new positions open practically daily.
However, not enough people apply for these jobs. Many
students graduating from high school have no experience
in computer science, believing that because they are not
experienced programmers, they are not cut out for jobs
mentioning terms like machine learning or big data. A
new initiative to eliminate the misconception that to think
computationally is a synonym to programming proposes
embedding computational thinking into curricular subjects.
We discuss one such effort and its encouraging results from
a curriculum implementation in a U.S. high school.

INTRODUCTION
Numbers and graphs from mathematical models make the
headlines daily, banks fight over potential new clients advertis-
ing different interest rates, APRs, and other confusing financial
terms. It may explain why nine out of ten high schoolers’ par-
ents say they would like their children to have access to com-

puter science (CS) courses [5,12]. The good news? The number
of schools offering CS in the U.S. is on the rise, and the number
of states adopting policies to promote K-12 CS education is also
increasing [13]. However, it is estimated that only a little over a
third of public high schools in the U.S. currently offer CS classes
and only sixteen states have adopted a policy to give all high
school students access to CS courses [12].

Occupations under the computer and information technol-
ogy umbrella described by the Bureau of Labor Statistics (BLS)
have a projected growth that goes from 5% to a whopping 32%
by 2028 (12% on average) [5] with one notable exception: com-
puter programmers, whose jobs are expected to decrease 7% by
2028 (Figure 1). To quote directly from reference [3], “computer
programming can be done from anywhere in the world, so com-
panies sometimes hire programmers in countries where wages
are lower,” strongly suggesting that learning how to program a
computer is an important skill to get someone inserted in mar-
ket of computer and information technology, but it is not the
whole story. Newcomers must bring a differential, something
in addition to coding skills. These new analysts, developers, sys-
tem architects, and alike need to demonstrate they can think
out of the box and think computationally.

34  acm Inroads  2020 March • Vol. 11 • No. 1

ARTICLES
Mathematical Modeling with R: Embedding Computational Thinking into High School Math Classes

The purpose of this research is to design and test instruc-
tional modules that can help high school math teachers to em-
bed computational thinking into their classrooms. The CodeR-
4MATH modules are designed to allow students to learn how
to tackle real-world problems using mathematical modeling,
while having a programming language as the modeling envi-
ronment. In this study we investigate why, and to what extent,
engagement in the project activities by high school students
enrolled in regular math courses contributes to reshaping their
level of interest in further exploring computing related learn-
ing opportunities in the future. Notably, student performance
demonstrates increased competency in mathematical modeling
and computational thinking.

THE INSTRUCTIONAL MODEL
The curriculum modules were developed to engage students in
mathematical modeling, using their knowledge of math con-
cepts to solve real-life problems, using two main pedagogical
approaches: context-based [e.g., 7,11] and faded scaffolding
[e.g., 4,14, and references therein]. In a context-based approach,
everything is taught in the context of the initial open-ended
problem. Students learn new concepts and tools only when
they need to use them, giving them the motivation to learn
something new. Scaffolding is targeted assistance provided to
students (either by their teacher or by prompts and hints in
self-paced tutorials, for example) as they perform a task. Faded
scaffolding can be understood simply as giving support to stu-
dents when the assistance is needed and removing it when it is
no longer needed, giving students the chance to exercise newly
acquired skills to solve more complex problems.

The iterative cycle of mathematical modeling involves iden-
tifying and selecting parameters to represent a situation, choos-
ing mathematical representations to define those parameters
and their relationships, performing mathematical operations
to draw conclusions, interpreting and validating the findings
against the situation, and iteratively improving the model (Fig-
ure 2). Studies have shown that computing activities helped
students develop a deeper understanding in a variety of math-
ematics domains [e.g., 1,9]. When dealing with a problem
(real-world or otherwise) to be solved mathematically, it is cer-
tain that one can tackle the problem using any media. The abil-
ity to teach our understanding of the problem to a computer is
referred here as computerizing the problem (cycle 3b in Figure
2). If we don’t fully understand part of the system we are trying
to describe, the computational results can (and often do) provide
us with a useful test for our initial knowledge and hypotheses, or
rather what the mathematical results are, either expected or not,
providing insights on how to further refine our algorithm.

During the classroom activities, we invited students to an-
alyze and solve problems that are relatively open-ended by de-
sign, to encourage students to brainstorm, make assumptions,
create algorithms, and hypothesize possible outcomes. Stu-
dents can then translate their algorithms into a computer code,
creating a mathematical model to test their hypotheses for
many different scenarios. Based on the model outputs, students

One strategy that can help to build a bridge across this gap
between computer and information tech professional supply
and demand is to engage students in computational thinking
(CT), a concept that predates coding. It is the thought process
involved in formulating problems and designing solutions that
can be executed by information-processing agents [16]. CT skills
are naturally exercised during the process of using mathematical
modeling to find solutions to often ill-formulated real-life prob-
lems. Embedding CT into mandatory curricular subjects, other
than explicit CS classes, extends the reach of CT as well as CS
to student populations that otherwise would not have access to
it. Not surprisingly, developing computational thinking across
all disciplines and educational levels has become a priority for
scholars and international agencies that make a call to integrate
these concepts across the K-12 and undergraduate curricula.

The Computing with R for Mathematical Modeling (CodeR-
4MATH) project, funded by the U.S. National Science Founda-
tion (NSF), has been working to create a collection of learning,
assessment, and tutoring resources. Throughout the CodeR-
4MATH instructional modules, students learn how to tackle
real-world problems using mathematical modeling, with pro-
gramming language (R) as the modeling environment. During
the process, students naturally exercise computational thinking
skills while learning basic concepts of computer programming.
Developed and supported by the R Foundation for Statistical
Computing, R is both a programming language and an open-
source environment for statistical analysis, and a favorite among
statisticians and data scientists. We developed a series of learning
tasks that encourage students to exercise computational think-
ing, working on topics that are relevant and relatable to them.

Figure 1. Projected change in employment from 2018 to 2028. Almost all
occupations under the computer and information technology umbrella
described by the BLS have projected growth for the next few years
(with the exception of computer programmers). Yet, many companies
report difficulties finding these skilled workers. Exercising computational
thinking may help to build a bridge across this gap between computer
and information tech professional CS skills’ supply and demand.

acm Inroads • inroads.acm.org  35

ARTICLES

METHODS
CURRICULUM AND IMPLEMENTATION
We split the activity into two real-world problems that we
named Meal Plan vs. Pay-As-You-Go (M.P. vs. PAYG) and
the Driving for Gas (DFG), both part of a module we called
Lifehacking. The module was designed to present open-ended
problems relatable to someone who is entering the adult life,
like figuring out the costs of eating in college or the real costs
of owning and driving a car. The activities were presented to
students as online tutorials; therefore, students could work
on them from any computer with access to internet. Students
worked on this module in a total of 6 hours throughout two and
a half weeks.

may revisit their initial assumptions, add or remove parame-
ters, modify both the algorithm and the code and run new tests,
repeating the process until they are satisfied with the model.

SETTING THE STAGE
School and teachers - The module was implemented in a public
high school located in a fairly prosperous community, with a
median annual household income in 2019 above US$170,000
[15]. The school offers a comprehensive four-year program with
over 1,500 students enrolled, but only 10% or fewer of students
enrolled in a CS course at some point. Asked the reason for the
low enrollment rate, one teacher explains: “It is because of ca-
pacity. You don’t have the number of teachers, or no sections are
approved to run. So we have wait lists for those classes.” The two
participating teachers had 8 and 18 years of experience teaching
mathematics at the high school level. One teacher had taught
introductory CS courses using Python as a programming lan-
guage, while the other teacher had no experience in teaching
CS or programming. Despite their limited experience in pro-
gramming, both teachers were enthusiastic about the opportu-
nity to engage their students in using computer programming
to solve mathematical modeling problems.

The students - The population in this study is formed by
42 students enrolled in Discrete Mathematics (DM). The DM
classes consisted of seniors in the second semester of their
final year of high school, enrolled in DM to fulfill their math-
ematics requirements before graduation. There were 28 fe-
males and 14 males, and the vast majority of them intended to
pursue careers in the humanities or social sciences (48% and
24%, respectively). Six students said they were interested in
pursuing careers in STEM such as marine biology and neu-
rosciences; however, none indicated an interest in majoring
in CS or mathematics (Figure 3). While three students men-
tioned that they had had some contact with programming in
the past, 39 students (93%) declared not to have any prior ex-
perience with CS or programming.

Figure 3. Intended major among students. The female/male ratio of the
students was 2:1 in this study, and the vast majority intended to pursue
careers in the humanities or social sciences.

Figure 2. Computational Mathematical Modeling Cycle. Mathematical modeling is an iterative process that
involves several steps from identifying and selecting variables to represent a situation to validating the
results, repeating the process until the model reaches an acceptable format given time and processing
constraints. Figure 2 is adapted from computational mathematical modeling cycle [3].

36  acm Inroads  2020 March • Vol. 11 • No. 1

ARTICLES
Mathematical Modeling with R: Embedding Computational Thinking into High School Math Classes

their pocket on a per meal basis. We decided for this approach
(suggesting they should work on a solution for multiple people
with multiple interests and values) to address the problem we
described in session 2.1, that is, they should develop a mathe-
matical model that could (1) maximize the number of college
students they could help in a given time and (2) find the best
solution for each particular case. Step-by-step, students were
guided through the math modeling process, brainstorming,
making assumptions about their clients’ (the college students)
eating habits, budgets, lifestyles, and personal preferences.
They gradually refined the model by revisiting their previous
premises and adding new parameters such as a variable num-
ber of outings per week (dinner with friends, for example), or
assuming that their client could have free meals for certain pe-
riods, maybe while visiting their family.

Students worked on this activity during five sessions over
two weeks and were strongly encouraged to think aloud and
discuss in groups. Teachers and researchers followed the group
discussion closely, taking notes of behaviors, comments, and
drafts that students may have been writing on paper before add-
ing their ideas into code. At the beginning of each new session,
the teachers reviewed what they had accomplished, addressed
any problems they had encountered, and set the goals for the
day. Students worked in small groups through the tutorial at
their own pace. All students were able to complete the activity
by the fifth session. After this activity, students were presented
with a new problem called Driving for Gas (described in the
following section) as an assessment of their learning.

Either because of socioeconomic status or personal interests,
students may think that building a mathematical model to help
them with a one-single-time-decision it’s just not worth the ef-
fort. Paper and pencil and a hand calculator would do. While stu-
dents may still be willing to do some work for academic purposes
(to get a good grade, for example), they would likely be more in-
clined to embrace a modeling exercise if they could see the model
as a tool to help other people while avoiding the tedious work
of repeating the same calculations from scratch for each person.

The tutorials were designed using RMarkdown [2] and the
tools from the learnr R package [11]. The tools in the learnr
package allowed us to create code snippets, pre-populate them
with templates (complete or incomplete codes), add hints and
solutions, and more. Once the student was logged in, any mod-
ification in the snippets was saved after they logged out, so they
could continue the exercise from the point they left. Figure 4
shows an example of one of the tutorial pages and the kind of
platform students were working on, designed to be self-paced
with all instructional elements. Students were free to modify
the pre-populated code snippets, complete coding exercises,
check hints and solutions, and write and run their own code.

MEAL PLAN VS. PAY AS YOU GO
In the first part of the activity, students were invited to wear
the shoes of a college advisor who has to help college students
decide between purchasing a meal plan (with unlimited ac-
cess to dining halls with an upfront fixed cost) or paying out of

Figure 4. Example of learning activity on CodeR4MATH. The tutorials were designed
using RMarkdown and the tools from the learnr package. And designed to be
self-paced, containing all instructional elements.

acm Inroads • inroads.acm.org  37

ARTICLES

RESULTS
STUDENTS’ MODELING ASSESSMENT
As described in the Methods section, we aimed to assess stu-
dents’ modeling skills using the Driving for Gas activity. The full
assessment code, written in R, is shared in Figure 7. First, we
asked the students to run the code and summarize the model’s
outputs. Then, we asked them to suggest modifications and to try
and implement their suggestions into the original code. From the
initial 42 participants, only 36 students returned the assessment.

Of course, it would be too ambitious to assume that students
would become self-sufficient computer programmers after 6
hours of exposure to their first coding experience. The ability to
quantify every student’s understanding of programming con-
cepts was limited to the students’ open answers and comments
to the model (the R code). Students were encouraged to write
down their thoughts and experiment with the code freely, that is,
they were not under any pressure of being graded. On one hand,
that allowed the students to brainstorm as they find fit, where
many out-of-the-box ideas may emerge. On the other hand, giv-
en the limit in time, they didn’t feel compelled to either get final
quantitative answers or write sharp, focused comments.

Defining which concepts students have (or have not) learned
was determined qualitatively. If a student made a reasonable sug-
gestion on how to modify the code in order to improve it (with-
out any judgment on the meaning of improvement, which would
vary for each student), we added 1 to the students-who-under-
stood-programming-concepts bucket. This way our qualitative
evaluation of students’ responses could be transferred to a quan-
titative system, more or less binary. Using this method, their
comments to the code suggested that half of students (18 out of
the 36 respondents) understood components of the model repre-
sented in the R program, and that they have achieved some level
of understanding of fundamental programming concepts such as
the meaning of variables in programming, vectors (as a variable
that contains a list of elements), and programming functions (as
secondary codes that are given a name and that perform certain
tasks when called in the main code). One student, for example,
made comments to the code, shown on Figure 5.

The code chunk in Figure 5 suggests that the student may
have decided to weigh in an additional cost that relates linearly
with the distance added to go to another gas station (although
they did not comment on the code where the 0.225 factor came
from). They then add this factor to calculate the cost_gs2_
real variable and proceed to create a data frame with results
and then later (not pictured here) to plot the results. Although

THE ASSESSMENT: DRIVING FOR GAS
The Driving for Gas activity was adapted from an activity de-
scribed in the Guidelines for Assessment and Instruction in
Mathematical Modeling Education (GAIMME) report [8].
The original problem challenges students to create mathemat-
ical models to help drivers decide whether it is worthwhile to
drive further to gas stations that sell cheaper gas. To assess the
students’ modeling skills within a short period, we adapted
the problem into a model improvement task. In addition to
the original problem statement, students were also presented
with a model written as a simple R program. Students were
asked to describe how the problem was defined and what vari-
ables were considered, comment on the assumptions made,
interpret the model’s outputs, and improve the model by de-
scribing additional factors to incorporate and modifying the R
program. Teachers and researchers further elicited students’
interest by suggesting that a computer code that would save
drivers money and time could become a smartphone or com-
puter app that could become profitable in the future. Students
received the suggestion very well and proceeded with their
individual work.

Students completed the assessment using RStudio®, a free
and open-source integrated development environment for R,
which gives them all functionalities they experienced when
using snippets, and much more. We asked students to submit
their answers individually. The activity requested that students
(1) run the template, paying attention to what each part of the
model (R code) was doing, (2) interpret the results (a graph),
(3) comment and criticize aspects of the model, (4) propose im-
provements, such as the introduction of new assumptions and
variables (or the removal of old ones), and (5) modify the code
to implement those improvements.

THE EXIT QUESTIONNAIRE
At the end of the unit, the students completed an exit question-
naire about their impressions, thoughts, and suggestions about
the modeling activities and their learning experience. The ques-
tionnaire was designed to help researchers understand how
the modeling activities had influenced the students’ interest in
computing and how their backgrounds, such as gender and ac-
ademic interest, might mediate the impacts.

Students were asked to provide honest feedback for the re-
search team to improve the curriculum. Among other things,
students were asked to define mathematical modeling in their
own words, to rate their interest in pursuing programming-re-
lated courses in the future, and the reasons behind their sen-
timent toward the activity and computer programming. They
were also asked to list the aspects they liked and disliked about
the module.

As it is common practice in educational research, classroom
observations and discussions with students and teachers were
part of the implementation of the CodeR4MATH tutorial.
However, the discussion and conclusions presented in this pa-
per are based on the analysis of the modeling assessment and
the exit questionnaire.

Figure 5. Code snippet from a sample of student work. Alterations in
the original R code were added by a student with no prior experience in
programming.

38  acm Inroads  2020 March • Vol. 11 • No. 1

ARTICLES
Mathematical Modeling with R: Embedding Computational Thinking into High School Math Classes

be more realistic to make. Also, I changed the graph to 10-50
[dollars] for the y-axis, so it’s easier to read.” Their comments
suggest their understanding of concepts such as variables and
functions in a programming environment, along with a level
of appreciation of the ease of testing a model represented in a
computer code.

IMPACT OF THE CURRICULUM MODULE ON STUDENTS’
INTEREST IN COMPUTER PROGRAMMING
In the exit questionnaire, we also asked students how the mod-
eling activities had influenced their interest in taking computer
programming courses in the future. For this question, we pro-
vided them a type of Likert scale going from ‘I became less in-
terested’ to ‘I became very interested’ and also provided them
a field to write down their own thoughts in case they found
the options didn’t suit their impressions. All 42 students picked
one of the first five options. We immediately followed with an
open-ended question, asking them to explain what aspects of
the modeling activities may have made them more or less inter-
ested in taking programming courses in the future.

As described in the Introduction, the participants in this
study were seniors, and only two of them had taken any CS
course during their high school years. They were enrolled in a
standard-level mathematics course to fulfill their math require-
ment; their mathematics achievement was “average or below
average,” according to their teachers, and the vast majority of
them intended to pursue careers in the humanities or social
sciences. All these characteristics projected a development
path away from computing education. Yet many of the students
came to see the value of computing and found interest in the
field that they previously perceived as irrelevant.

A total of 14 students (one third of participants) said they
became interested in taking programming classes in the future
(sum of Little more interested and Much more interested cat-
egories in Figure 8). Half of the students said that they were
not interested in it before the activity and that their inclination
did not change. Two students (5%) said that they were already
somewhat interested in taking programming classes in the fu-
ture and that didn’t change either. Lastly, five students (12% of
the total) said that they became less interested after this activity.
The reasons that students indicated to have contributed to their
increased or decreased interested in pursuing computer pro-
gramming are discussed below.

it may seem a very simple modification to the experienced pro-
grammer, these students have never had computer program-
ming classes before.

The main output from the original code provided to the
students was given by the final graph shown in Figure 6. From
the 36 students who delivered the assessment, 15 seemed to
have read the model (the R code) as a statement rather than an
open problem and may have misinterpreted the output graph,
assuming that the second station was at a fixed distance of
30 miles from the first one. “The results are strange,” explains
one of the students. “At first, I would have easily made the trip
across town to Gas Station 2, however, little did I realize that
Gas Station 2 is 30 miles away and ends up being the same
price as Gas Station 1.” Actually, the model describes that the
price per gallon is fixed for each gas station, while varying the
distance between the two stations (from 1 to 30 miles), to test
what would be the real cost of driving to a second station de-
pending on its distance from where the driver (and the first
station) is.

As we mentioned, students were also asked to describe the
modifications they found necessary to make to the model.
Students seemed to be forthcoming and were not shy about
brainstorming suggestions to make the model more realistic.
“I’d want to factor in the amount of time the person has to go
get gas and the amount of money they have to spend,” suggest-
ed one student. “That would make the model more precise and
personalized to the needs of the person using it.” Another stu-
dent managed to add a few modifications to the code, explain-
ing their thinking, “I changed the prices of the gas on both gas
stations, making it more drastic rather than just 25 cents. I also
decreased the distance from gas station 2, so the trip would

Figure 6. Output from the mathematical model presented in the “Driving
for Gas” assessment. Students were asked to run a simplified model whose
code was written in R and interpret its output, given by this simple plot.

The connection to real-life questions
and the ability to look at them

through a different perspective but
still using the mathematical

skills they have already acquired at
school appealed to students.

acm Inroads • inroads.acm.org  39

ARTICLES

themes for which students became interested in computer pro-
gramming were:

Coding is powerful
Solving real-world problems with math modeling

and coding
New experience

THE REASONS BEHIND INCREASED OR MAINTAINED
INTEREST IN PROGRAMMING
Students were also asked to explain what about the learning
experience made them more or less interested in taking com-
puter programming courses in the future. We categorized their
open-ended responses into broad themes. The three main

Figure 7. “Driving for Gas” Assessment. Driving for Gas assessment as presented to
the students. They were required to comment on the R code, suggest modifications
and refinements, and finally implement them to the code.

Figure 8. Impact of the mathematical modeling activity of students’
interest in computer programming. Many students came to see the value
of computing and found interest in a field that they previously perceived
as irrelevant to them. One-third of the students said that they became
interested in taking programming classes in the future.

40  acm Inroads  2020 March • Vol. 11 • No. 1

ARTICLES
Mathematical Modeling with R: Embedding Computational Thinking into High School Math Classes

REASONS BEHIND SOME STUDENTS’ DISINTEREST IN
PROGRAMMING
Not all students felt compelled to explore more program-
ming-related courses though. Twenty-one participants (50%)
said that they were not interested in computer programming
before the activity and that they were still not after the exer-
cise. Five students stated that their interest in programming
had actually declined. The reasons these students pointed out
for not becoming interested (or becoming less interested) in
programming vary, but the vast majority were related to their
self-concept in relation to CS and mathematics itself. In fact,
the responses from over 80% of students in this group (still not
or less interested in programming) fall under this self-concept
category, and the disproportionate majority of these are females
(a 6:1 female-male ratio, compared to 2:1 for the whole popula-
tion that responded to the questionnaire).

Negative reason 1: Self-concept
Some students seem to believe they are simply not good at
mathematics or computer sciences. “I’ve never been a heavy
math person,” said a student interested in the humanities, “and
although computer coding is intriguing and seems complex and
fascinating, I have no real interest to take another class.” Still,
they recognize that being exposed to the experience was help-
ful to them, adding that “I liked that it was unlike anything we
have done all year, it was new and yes a little confusing but also
interesting.” Another student says that “Coding is just something
I’m generally not interested in, but I think it was good that I was
introduced to it, just in case I may need to use it.”

We can say that even if for part of the students, the interest in
programming has not been triggered, they became aware of the
value of learning about the process of math modeling and coding.

Negative reason 2: More scaffolding, please!
The activities were designed to pose semi-open questions to the
students, in the sense that students were guided with instructions
and examples, and their teacher-led discussions in the classroom.
Because the tutorials were self-paced, beginners could take their
time to walk through the activities, while more able students had
the opportunity to go quickly through the basics and dedicate
more time to refining their models. A few students, however, in-
dicated that they would prefer more scaffolding and more direc-
tion from their teachers, showing some level of discomfort with
the curriculum design. “Even when I asked questions, it was still
extremely unclear on what to write within the code and what I was
supposed to be analyzing,” said a student who was interested in the
performing arts. When asked what they did not like about the ac-
tivity (another question in the exit questionnaire), they pointed out
that “when working with code or when creating code, you aren’t nec-
essarily looking for one specific answer. That really tripped me up
and was something I didn’t understand until the last day of coding.”

Negative reason 3: Coding is boring
Two students who intended to major in the humanities re-
marked that, for them, programming was boring and not useful.

Positive reason 1: Coding is powerful
Eight students said that coding is a powerful tool that makes data
analysis much easier and faster. The majority of students who saw
coding as a powerful tool was disproportionately male (75% with-
in this subgroup). They also mostly intended to major in fields
that require quantitative skills (e.g., STEM and social sciences). “I
just found it really fascinating how coding can make life that much
easier,” said a student interested in majoring in business. “When I
learn more and more about it, I get more into it. Something I don’t
experience every day, it’s nice and in a way fun.” Another student,
who intended to major in marketing, said that they appreciated
“how you can use coding to solve big mathematical problems.” An-
other student, who claimed to be interested in STEM, said that
they became more interested in programming after the activity
because “coding can make keeping track of data much easier.”

Positive reason 2: Coding can be used to solve real-
world problems
The connection to real-life questions and the ability to look at
them through a different perspective but still using the math-
ematical skills they have already acquired at school appealed
to students. Several previous studies (e.g., [9] and references
therein) have already shown that solving real-life problems of-
ten increase students’ performance in CS courses. “I thought it
was very interesting,” a student said. “It opened up my mind to
other ways in which math can be used in the real world.”

Students also appreciated the process of mathematical mod-
eling, which relates directly to the exercise of CT skills. “The
coding exercises required that I defined all variables and then in-
tegrate them into some sort of data structure, which is a valuable
process to utilize even without coding,” said one of the students.
Also, the teachers have appreciated that students could experi-
ence the thinking process of solving an open-ended problem. “I
think getting them to think of a big picture for me was probably
the best piece,” one of the teachers said. “It was just getting them
to think bigger than themselves. How do I take this problem, and
how do I project it, and what are the issues I need to think about?”

“I think that connecting, getting them to brainstorm, getting
them to be more aware, that was my favorite part,” another
teacher said. “Having them [students] think that there are things
out there that you can add value [to], that people’s days can be
better because of your model.”

Positive reason 3: It was a new experience
Finally, the exposure to something that they had never done
before also seems to have captivated students’ interest. “It was
a new and unique experience that showed a new way of thinking
about modeling,” said a student, “I knew nothing about comput-
er programming, so it gave me a look into what it can be.”

Students seem to have found it compelling to have been ex-
posed to a new use of a technology with which they are already
familiar (their computers) to do something different and more ap-
plied. “I don’t take any classes that require [me] to do anything on
my computer besides type essays or Google things,” another student
said, “so using my technology in a different way was cool for me.”

acm Inroads • inroads.acm.org  41

ARTICLES

as mathematics course. However, in close collaboration with
the teachers, we observed strong potential for non-CS teachers
to develop competencies to integrate CS content in their class-
rooms using the designed tutorial, without typical, extensive
professional development experience. While one of the teach-
ers had no prior experience in teaching CS, they both showed
the same high autonomy in using the tutorial and guiding their
students to complete the activity. Students’ performance in the
assessment and their responses to the exit questionnaire were
comparable for both classrooms. Despite the small sample
size in this study, these results strongly suggest that the class-
room-readiness of the tutorial materials is critical to ensure not
only that students will have a worthy learning experience, but
also to boost teachers’ confidence in repeating the implementa-
tion or even adapting the curriculum with their own inputs or
style, whether or not they have training in teaching CS.

The overwhelming majority of students who said they were
not interested in programming (or became less interested) were
females (~78%). Although we do not focus on the gender gap, it
did not pass unnoticed. However, it would be incautious to affirm
that gender may have played a major role in this result, because
of confounding factors such as the fact that most of them were
interested in careers in the humanities. They formed the vast
majority of students whose reasons behind their lack of interest
in programming are extended to the sciences in general. Several
responses included phrases like “I am not a math person,” or “It
doesn’t play to my strengths,” and “I don’t think it is for me.” It
would be too ambitious to expect that educators could decon-
struct the I-am-not-a-math-person mindset created by young-
sters who reached their high school years. However, we hope that
the results from this experience can provide some insights on
how to exercise computational thinking in mathematics class-
rooms to help students abandon the erroneous preconceived
idea that exact sciences (and programming in particular) are out
of their reach. The mathematical modeling process is naturally
aligned with computational thinking, and math modeling activ-
ities regularly naturally motivate the use of computational tools.
Our results reinforce that, although it may seem counter-intui-
tive, presenting students with CT approaches to solution building
(e.g., visualizing a set of data, finding a multitude of solutions in
moments for comparison and/or analysis) in their regular math
classes have great potential to lead to better learning outcomes.

SUMMARY
Computational thinking is a collection of thought processes
involved in formulating problems and their solutions so that
the solutions are represented in a form that can be carried out
by an information-processing agent; a computer program ex-
ecuted by a computer, for example. Of course, computational
thinking is a highly desirable skill set, and an excellent way
to exercise this way-of-thinking is through math modeling
and computer programming. However, students are leaving
high school without having much experience—if any—with
programming or, more broadly, with computer sciences. That

“I found it boring, and there was no creative part of it,” said one
of them. They continued by saying that “I didn’t find mathemat-
ical modeling to be that much of use.” A second student said, “it
was very confusing, and I did not think this had anything to do
with this math class.”

Except for the students who felt they would prefer another
delivery format, with more scaffolding (likely from their teach-
ers), all other reasons given by students for not liking computer
programming seem to be primarily due to preconceived ideas
about the subject or about themselves. These students appar-
ently see programming, and even mathematics, as subjects re-
served to the tech-savvy or to the math person, believing that
some people are naturally good at mathematics and others are
simply bad at it, and put themselves in the latter group.

FUTURE TOPICS OF INTEREST
Finally, we asked students about their topics of interest, that
is, subjects they would like to learn more about and that they
would like to deal with in an activity like this. Forty-five percent
of participants (19 students) said they would like to explore is-
sues related to daily life problems, such as finances, student life,
or personal time management.

“Budgeting in everyday life, taxes, and more,” suggested one
of the students. “Topics that adults deal with in everyday life,
but that aren’t necessarily explained and/or taught to students
within the school curriculum.” This student was interested in
pursuing a career in the performing arts. These participants
identified possible topics of interest as being related to a per-
son’s daily life, in the lines of the Lifehacking curriculum mod-
ule. Another student who declared their intention to follow a
career in psychology said, “Since I am going to college, another
topic on it and saving money would be engaging,” and said that
they became more interested in exploring programming-relat-
ed courses in the future.

DISCUSSION
There is no substitute for a motivating environment where
students feel empowered to do great things with the resourc-
es that they already have in hand. The use of code snippets to
reduce syntax-related stress, along with engaging and relatable
real-world problems seem to have helped many students feel
comfortable and curious about the possibilities of math model-
ing and programming, while exercising computational thinking
skills. While the activity was not able to embed appreciation for
modeling and/or programming to all participants, we were pleas-
antly surprised to find that one-third of them indicated they ac-
tually became more interested in pursuing programming-related
courses in the future after this experience. This is a positive and
encouraging outcome, considering that most of these students
had not taken computer science courses during their high school
years and the vast majority of them had not seen how computing
was relevant to their everyday life and intended majors.

This study was not intended to investigate how non-CS teach-
ers could be prepared to teach CS content in their courses such

42  acm Inroads  2020 March • Vol. 11 • No. 1

ARTICLES
Mathematical Modeling with R: Embedding Computational Thinking into High School Math Classes

the erroneous preconceived idea that exact sciences (and pro-
gramming in particular) are out of their reach.

Acknowledgments
This research was supported by the National Science Foundation under grant number
1742083. We are grateful to the numerous discussions with mathematics teachers
during curriculum implementations, workshops, conferences, and alike. Their support,
knowledge, and passion make our work possible.

References
 1. Akpinar, Y. and Aslan, Ü. Supporting Children’s Learning of Probability Through

Video Game Programming. Journal of Educational Computing Research, 53, 2
(2015).

 2. Allaire, J.J., Xie, Y., McPherson, J. Luraschi, J., Ushey, K., Atkins, A., Wickham, H.,
Cheng, J., Chang, W., and Iannone, R. (2019). rmarkdown: Dynamic Documents for
R. R package version 1.14; https://rmarkdown.rstudio.com. Accessed 2019 July 26.

 3. Blum, W. and Leiβ, D. (2007). How do students and teachers deal with modelling
problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical
modelling (ICTMA 12): Education, Engineering and Economics. (Chichester, UK:
Horwood Publishing, 2007), 222-231.

 4. Bruner, J. S. From communication to language - a psychological perspective.
Cognition, 3, 3 (1974), 255-287.

 5. Bureau of Labor Statistics Employment Projections data for 2018-2028; https://
www.bls.gov/ooh/computer-and-information-technology/computer-and-
information-research-scientists.htm. Accessed 2019 October 30.

 6. Google Inc. & Gallup Inc. Trends in the State of Computer Science in U.S. K-12
Schools; https://news.gallup.com/reports/196379/trends-state-computer-science-
schools.aspx. Accessed 2019 July 26.

 7. Gilbert, J.K. On the Nature of “Context” in Chemical Education, International Journal
of Science Education, 28, 9 (2006), 957-976.

 8. Guidelines for Assessment & Instruction in Mathematical Modeling Education
(2016); https://www.siam.org/Publications/Reports. Accessed 2019 August 6.

 9. McMaster, K., Anderson, N., and Rague, B. Discrete math with programming: better
together. ACM SIGCSE Bulletin, 39, 1 (2007),100-104

 10. R Core Team. R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria; https://www.R-project.
org/. Accessed 2019 July 26.

 11. Rose D.E. Context-Based Learning. In: Seel N.M. (eds) Encyclopedia of the Sciences
of Learning. (Springer, Boston, MA, 2012).

 12. Schloerke, B., Allaire, J.J., and Borges B. learnr: Interactive Tutorials for R. R
package version 0.9.2.1; https://CRAN.R-project.org/package=learnr. Accessed 2019
July 26.

 13. State of Computer Science Education (2018); https://code.org/files/2018_state_of_
cs.pdf. Accessed 2019 July 26.

 14. Tawfik, A.A., Law, V., Ge, X., Xing, W., and Kim, K. The effect of sustained vs.
faded scaffolding on students’ argumentation in ill-structured problem solving.
Computers in Human Behavior, 87 (2018), 436–449.

 15. United States Census Bureau (2018); https://www.census.gov. Accessed 2019
August 9.

 16. Wing, J. Computational Thinking. Communications of the ACM 49, 3 (2006), 33-35.

Kenia Wiedemann
Research Associate
The Concord Consortium
25 Love Lane, Concord, MA USA
kwiedemann@concord.org

Jie Chao
Research Scientist
The Concord Consortium
25 Love Lane, Concord, MA USA
jchao@concord.org

Benjamin Galluzzo
Associate Professor
Institute for STEM Education
Clarkson University
8 Clarkson Avenue, Potsdam, NY USA
bgalluzz@clarkson.edu

Eric Simoneau
CEO at 33 Sigma Labs
22 College Avenue, Arlington, MA USA
Mathematics Teacher at Boston Latin School
78 Avenue Louis Pasteur, Boston, MA USA
mrsimoneau@gmail.com

DOI: 10.1145/3380956 ©2020 ACM 2153-2184/20/03 $15.00

may happen for several reasons. In one scenario, students
simply don’t have classes being offered at their school. In an-
other situation, a school may offer computer science classes,
but students are either too busy with their regular classes or
think that because of their career preferences for the future,
programming (or mathematics itself) is “not for them.” To
overcome these barriers, the CodeR4MATH project proposes
to integrate computational thinking into regular, mandatory
mathematics classes. We propose to give students the oppor-
tunity to create, visualize, and analyze mathematical models
using the programming language R as the modeling environ-
ment. At the same time, activities like the one presented in
this study, provide teachers with several instructional tools
that they can use in the classroom to promote integration
between CT and CS into their regular math classes, without
having to open up room to a foreign subject.

Here we described the results from the implementation of
our pilot module called CodeR4MATH on a population of 42
senior high school students enrolled in discrete mathematics.
The module is composed of several self-paced tutorials that
challenge students to model solutions for practical problems
like the cost of eating in college, the real costs of owning a car,
deciding between careers, etc. In other words, the module was
designed to bring open-ended problems that are relatable to
someone entering adult life. All but three students had no prior
experience with programming, and the whole group had never
enrolled in computer science classes before.

Our results are undoubtedly encouraging. After a total of six
hours of interaction with the tutorials, including an assessment,
a third of the students who participated in the implementation
declared that they became interested in taking programming
classes in the future (2 students, or 5%, said they were already
interested in exploring this possibility in the future).

Students cited a few reasons for becoming interested in pro-
gramming that we put into three major groups: they felt that
coding is a powerful tool, that it can be used to work on and
solve real-world problems, and some students simply became
interested because the whole experience was out-of-the-ordi-
nary use of technology, which was something new to them.

We also observed that for the rest of the students, that is, those
who did not care about programming and that said their interest
did not change, the primary reason we identified was self-con-
cept. Twenty-one out of the 26 students who said that they were
still not (or less) interested in programming, justified their senti-
ment because they believe that some people are naturally good at
mathematics and others are simply not, identifying themselves as
not being a math person. Although it is common sense that there
is no such thing as a math person, it is unfortunate that these
youngsters may leave high school (whether or not they decide
to go to college after that) without developing true appreciation
for exact sciences. It may be difficult for a high school teacher to
change this mindset on students who reached high school and
are preparing to ingress in the adult life. However, we hope that
the results from this classroom experience can provide some in-
sights to teachers so that they can help their students to abandon

