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A scientist stares at her computer screen as small blue dots 
appear, one after another, along a coordinate grid. Her 
experimental apparatus hums in the background. Once 

per second, a new dot appears on her screen. Sometimes it’s a 
little higher than the last, but usually it’s a little lower. Interest-
ing. What will these dots tell her about the secrets of the natural 
world? Much less than she would like them to.

In professional science, these dots rarely tell you anything 
right away about the natural world. They more likely mean 
something about that experimental apparatus humming away 
in the background—It’s running hot again. We need a new vac-
uum pump. Are the tubes holding steady? It’s only after lots of 
work—years of work, possibly—that those dots will begin to 
tell a reliable story about the natural world. Yet this is how sci-
entific progress happens. As scientists tinker with and improve 
their instruments and methods, the data they produce begin to 
reveal more about the world.

To scientists, this means that not all data is evidence. Before 
data can be used as evidence of something in the natural world, 
a lot of questioning must happen first: What else could have 
caused this? Is it an effect of my instruments? Some interference 
from the world? Scientists never just trust that data are good, or 
meaningful. Puzzling over data—trying to understand why it 
is the way it is—is central to scientific practice.

Yet in science classrooms, students usually see and work 
with data that’s intended to tell them right away about the 
natural world. Students then often treat the data we provide 
to them as factual, rather than as a source of evidence (Duschl 
2008; Sandoval and Millwood 2005; Berland and Reiser 2009; 
McNeill and Berland 2017; Hancock, Kaput, and Goldsmith 
1992; Manz 2016), and struggle to identify sources of error or 

uncertainty in evidence (Masnick and Klahr 2003). Students 
rarely have opportunities to critique the methods by which 
data were produced, to consider data integrity or sufficiency, 
or to otherwise engage in the scientific practices by which data 
become evidence (Duncan, Chinn, and Barzilai 2018; Sama-
rapungavan 2018; Duschl 2000). Students also don’t get to do 
the authentic work of figuring out how to improve it (Chinn 
and Malhotra 2002; Lehrer, Schauble, and Lucas 2008; Hardy, 
Dixon, and Hsi 2020).

Rather than always aim for certainty, we need to let scientific 
work with data be more uncertain. We can then allow students 
to do more of the “puzzling over data” themselves, whether 
it’s deciding what sorts of data to collect and how, or develop-
ing criteria for what counts as “good data” (Ko and Krist 2018; 
Manz and Suárez 2018). To get students to do this sort of scien-
tific thinking, and to prepare them for future work with messy 
data, we need to break data—occasionally, data must fail to tell 
students about the natural world.

Let’s get messy: three ways to tweak your 
existing labs
Sensor-based science labs are a great context for students to 
understand where data come from. When students use sensors 
to produce data, they can begin to see data not as “fact,” but 
as created by sensors, computers, scientists, and the natural 
world (Hardy, Dixon, and Hsi 2020). To develop new types of 
sensor-based labs for high school biology, we designed many 
variations on traditional lab experiments. Our labs used “Do-
it-Yourself” probeware (Tinker and Krajcik 2001), including 
low-cost commercial sensors, and internet-connected Rasp-

FIGURE 1

CO2 data.
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berry Pi computers (Hsi, Hardy, and Farmer 2017). These 
sensors presented no more safety risk than other low-voltage 
electronics though the sensors themselves can be damaged (e.g., 
by water); they allow students to view the sensors as designed 
technologies rather than incomprehensible black boxes (Hardy, 
Dixon, and Hsi 2020).

Here are three effective ways to get students puzzling over 
their sensor data.

Loosen up the procedures
In a traditional photosynthesis experiment, we give students 
instructions to follow to create an experimental setup: Twenty 
spinach leaves laid out flat at the bottom of a closed container 
and a carbon dioxide sensor stuck into the container to mea-
sure the changes in carbon dioxide level. They then record 
data for a prescribed amount of time when the leaves are in 
the dark, then again in the light. Instead of giving his students 
detailed instructions, Mr. B simply showed his class a demo 
setup, describing it as just one way to do it. Students then built 
setups of their own.

This led to more variation in their setups: number of spin-
ach leaves, distance to the lamp, how well sealed the containers 
were. This variation became an important talking point in a dis-
cussion of the lab results. For example, Fernando’s group held 
its lamp to the side instead of directly above the spinach con-
tainer. As a result, the intensity of light was much lower than for 
other groups. Even in their “light” condition, they saw that their 
CO

2 
levels rose slightly instead of dropping like other groups. 

During the class discussion after the lab, most students thought 
that plants do photosynthesis in the light but released CO

2
 in the 

dark. Fernando’s group data led them to wonder whether pho-
tosynthesis and cellular respiration may be happening simulta-
neously and at different rates. This variation in the data led to 
a more sophisticated, and more accurate, understanding of the 
biological processes.

“The Three Scientists”: Support multiple methods
In a ninth-grade biology class with Ms. T, we described the ways 
that three different scientists might approach the same experi-
mental question. We called the three scientists “The Coder,” 
“The Planner,” and “The Tinkerer.” The Coder would use our 
project’s software to program the lamp to turn on and off while 
collecting CO

2
 data. The Planner would create three separate 

data sets, varying the light levels for each by manually adjusting 
the lamp. Last, the Tinkerer would collect one long data set and 
vary the light levels by removing strips of tin oil placed between 
the light and the spinach.

On lab handouts and in small groups, students described 
their methods and explained the benefits and drawbacks of each 
approach. Responses reflected a combination of students’ pref-
erences for ways of doing science, as well as their understand-
ings of the limitations of the tools and materials. Most groups 
chose the Planner’s method, citing reasons like, “I like planning 
things” and “We can get more data and because we can check it 
against our predictions.” Groups that chose the Tinkerer meth-
od liked that they could “do something physical,” and thought 
that this method would yield more accurate data. Last, many 
students that chose the Coder method enjoyed programming 
and thought that minimizing the potential for human error 
would lead to better data, and with less effort.
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When students all use multiple methods, it ensures variation 
in the data across the class. This variation can be productive (as 
in the example of Fernando’s data) but can also highlight that 
there are many ways of approaching scientific problems; each 
approach has different benefits and drawbacks, and the data 
you make is always dependent on the way you make it.

Re-frame the goals of the lab
The goal of a lab is usually to answer a question such as, “How 
does the rate of photosynthesis depend on the light level?” But 
a lot of scientific lab work involves figuring out how to make 
good measurements in the first place, using the particular tools, 
materials, or technologies available.

To engage students in this type of scientific thinking, we 
re-wrote a cellular respiration lab as a design task. Instead of 
answering a question, we ask students to use available mate-
rials (e.g., balloons, straws, tape, sealable bags) to figure out 
ways to measure the CO

2
 in their breath. The only problem is, 

the concentration of CO
2
 in your breath is much higher than 

the sensor can measure. Across the classroom, students tried 
many ways of creating useful data. Some students used a straw 
or inflated a balloon and blew air directly over the sensor. Oth-
ers diluted the sample by filling a small sealable bag with their 

breath and inserting it into a larger one filled with air. They 
then popped the smaller bag and made their measurements. 
This way of framing the lab activity opened up space for mul-
tiple methods, and made the sensors and their limitations 
central to the scientific activity. The classroom became a place 
where students could tinker, troubleshoot, try out, and share 
different techniques.

In a re-design of our photosynthesis lab, we asked students 
to “create a data set that tells you as much as possible about the 
relationship between plants, light, and CO

2
.” To collect data, 

many students held the lamp by hand, watching their data as 
it came in, adjusting the height of the lamp when they decided 
they had enough data at each height. Rather than “set it and 
forget it,” the students became active participants of an ongo-
ing experiment. We saw this again in a follow-up lab activity 
in which students had the goal of stabilizing the carbon dioxide 
levels. Many students again manually adjusted the height of the 
lamp to find just the right level of light to balance the rates of 
photosynthesis and cellular respiration. Others added sheets of 
wax paper between the lamp and the container to gradually ad-
just the light levels. Others used the programming capabilities 
of the software to turn the lamp on when the CO

2 
rose above a 

threshold level.

FIGURE 2

Data story.

23www.nsta.org/highschool

HOW THE DATA GOT THEIR DOTS



When students truly create data themselves, either by devis-
ing the methods or by taking on an active role in the ongoing 
experiment, their data begin to show a history of their own de-
cisions and interactions. For example, a student might notice a 
pressure spike from when they bumped into the container, or 
what looks like noise if they didn’t take care to isolate the sen-
sors. Further, noticing these features of their data can lead stu-
dents to wonder how these sensors really work. They begin to 
ask more questions about the experimental setups and the tech-
nology: How exactly does a CO

2 
sensor create a number? Why 

does the sensor read a different value if we apply pressure to the 
container? And what is perhaps the central question in scientific 
reasoning about data: What is this data really telling us?

Helping students make sense of messy data
When students make their own data, it becomes more difficult 
to take a single, straightforward approach to analyzing it. So in-
stead of stepping students through an analytic procedure, we’ve 
focused on pre-analysis and discussion as places to support the 
sort of “puzzling over data” that scientists do.

Data (back)stories: The where, why and how of data 
To open space for puzzling and wondering about data—the 
sorts of work scientists might do before a rigorous analysis—we 
created an activity type called “Data (Back)Stories.” They are 
“backstories” of the data, told with and about a data set about 
how it came to be: What might have been happening at each 
moment in time to produce this data? We have incorporated 
Data Stories into student worksheets (see Figure 2), as well as in 
routines for class discussions about data.

A good way to introduce Data Stories is with graphs of some-
thing familiar or personal to the students, like a week or month 
in their classroom. In this case, Data Stories can be told by link-
ing features of the graphs to prior knowledge they have about 
their school or class schedule, numbers of students, teacher free 
periods, fire drills, weather, local air conditions, etc.

For example, Ms. T had students look at graphs of CO
2
 and 

light level data that she had collected in the classroom over the 
prior week. She projected the graphs at the front of the room 
and showed students the Internet-of-Things sensor kit that she 
used to create them. On accompanying worksheets, students 
were asked to locate three events in the data: when students 
left the classroom, when the internet connection was disrupted, 
and when a janitor entered the classroom. Then students were 
asked to figure out which days of the week the data was being 
collected. Students combined their knowledge of their school’s 
bell schedule with features in the graph to make guesses.

Ms. T ran her hand along the horizontal time axis of the 
projected graph, asking the class to stop her when she reached 
each event. Students then explained their reasoning using fea-
tures of the CO

2
 data, light data, or both. During this activity 

there was a clear sense of excitement and amusement about the 
classroom data. A pair of students joked about wishing they had 

blown on the sensor kit to mess up the data. One class jokingly 
accused the “shady” janitor of disrupting the sensor connection, 
and wondered aloud why he might come to the classroom so 
late at night, and stay for such a long time.

This activity was engaging, and highlighted the way that 
Data Stories make room for thinking about the way that data is 
really produced: involving human actors like the janitor or the 
teacher herself, the students in the classroom breathing carbon 
dioxide throughout the day, and the internet connection across 
which the data is transmitted. The activity also opened scientific 
questions about respiration that began a storyline for the unit.

When students can see the sensors and students behind the 
data—in addition to “the science”—they can then engage in 
more sophisticated scientific reasoning about good experimen-
tal design and methods, and about the trustworthiness of the 
data as evidence.

Whole-class data discussions
Discussing data from labs as a whole class is a great way to get 
students thinking about sources of variation in data. For exam-
ple, after the students in Ms. K’s classroom completed the cel-
lular respiration “design” lab described above, Ms. K facilitated 
a whole-class discussion about their data. When one student 
described his data as “stair steps,” Ms. K asked the class why it 
might look like that. Some students attributed the steps to the 
data-sampling rate on the sensors, or the data-saving rate of the 
computers. Another student suggested that it was as if someone 
was breathing in and out. Ms. K brought these together, saying, 
“OK, it could be this, it could be that. Don’t tell us yet—first tell 
us what you did to make this data (materials)? What could have 
been going on?”
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With this “maybe” move, Ms. K supported the possibility of 
multiple influences on data, inviting students to wonder about what 
is real and what is due to the setup or sensors. Here the data don’t 
just tell you about a scientific phenomenon, but are an artifact of the 
technologies and of students’ choices about how to make their mea-
surements. In such discussions, students not only offer explanations 
of features of their data, but also suggestions on how to improve 
their measurements. For example, when noting that one student’s 
data had hit the maximum value that the sensor could measure, an-
other asked him why he had not diluted his CO

2
 sample first.

Discussing results of a lab can be a bit more difficult when 
students have very different data sets. To begin to make sense 
of the varied experimental results, Ms. K’s strategy was to layer 
students’ data from each condition on top of each other. Stand-
ing at the whiteboard, she first asked her students to describe 
their data to her. As they did, they used their own language, 
saying “bumpy” or “up, fast,” Ms. K sketched out what they told 
her. They’d correct her: “No, spikier—more like stair steps.” or 
“No, it was steeper than that.” She’d rephrase: “OK, a greater 
slope?” and resketch until they were satisfied. She repeated this 
for multiple data sets/students, one on top of the other. Students 
could see that—despite their data being bumpy and wiggly, and 
overall quite different—they still all saw the same overall effect: 
CO

2
 levels rose in the dark, and dropped in the light. And even 

though the students had all used different methods to create 
their data, they (with Ms. K’s facilitation) were able to arrive at 
a consensus about what had happened overall, which was suf-
ficient to move the conceptual discussion forward.

Looking forward
For scientists, data is not the same thing as evidence. But for 
most students, the data they see in science classrooms—in their 
textbooks or from their own labs—is always used as evidence. 
This means that students lose out on the chance to practice cri-
tiquing the methods used to produce data, or thinking about 
how to collect better and more useful data.

While the resulting problems students have in reasoning 
about data have been well-documented, research on the effec-
tive design of sensor-based labs to promote a more sophisticated 
understanding of data is still in an early, exploratory stage. This 
early work may pave the way to later develop summative as-
sessments for students’ understanding of data that can both help 
us see what individual students understand and gauge whether 
laboratory experiences are effective for all students. Yet at this 
stage, we use multiple methods, including informal and for-
mative assessments, to elicit students’ reasoning so that we can 
characterize the opportunities that labs provide for students to 
think about their data in new ways. For instance, lab work-
sheets can prompt students to notice effects of the sensors on the 
data (e.g., the response time, or range) and ask students to de-
scribe possible causes. This can both probe their understanding 

of the sensors and prime them to consider the sensors as active 
in producing the data. Further, written data stories can show 
whether students can identify features of data due to the sen-
sors themselves, or to human activity, in addition to those due 
to the phenomenon under study. By creating opportunities for 
students to see their data in new ways, we can help them begin 
to think in sophisticated ways about data and evidence.
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