
EARTH SCIENCE ASSESSMENT WITH AUTOMATED FEEDBACK (ESAAF) 
The Earth Science Assessment with Automated Feedback (ESAAF) project is a Design and Development 
Project submitted to the Assessment Strand of the DRK-12 program. ESAAF plans to make critical 
improvements on current automated scoring models to accommodate formative earth science assessments 
with complex scoring rubrics and provide immediate feedback to support the teaching and learning of 
argumentation related to climate change and fresh water availability in secondary school classrooms.  

IMPORTANCE & PROJECT GOALS 
Importance of the science content chosen. Earth and Space Sciences (ESS) are one of the key content 
areas contributing to science literacy as highlighted in A Framework for K-12 Science Education: 
Practices, Crosscutting Concepts, and Core Ideas, (NRC, 2012) and the Next Generation Science 
Standards (NGSS; NGSS Lead States, 2013). Topics such as climate change and the future of fresh water 
availability represent a complex set of interactions that blend science and human impacts. Climate change 
has drawn world-wide concerns, and recent extreme weather events such as Hurricane Sandy and tropical 
storm Irene are likely results of global warming (Ritter, 2012).  It is now considered certain (>95%) that 
human influence has been the dominant cause of the warming (Intergovernmental Panel on Climate 
Change [IPCC], 2013). Therefore, it is of critical importance to educate students with climate science 
literacy to help them make informed decisions about actions that affect the climate (U.S. Global Change 
Research Program, 2009). Fresh water availability is another focus of IPCC (2007). According to the 
International Water Management Institute (IWMI), approximately 1.2 billion people live in areas with 
physical water scarcity (i.e., dry areas), and another 1.6 billion people face economic water shortage with 
water use growing at a faster rate than the rate of the population increase (Molden, 2007). The situation is 
further exacerbated by the unpredictable distribution of water caused by climate change (Rogers, 2008). 

Earth science curricula and assessments should focus on how human activities have altered 
environments and their impacts on living things (e.g., ESS3.D Global climate change in the new 
standards). The new standards urge these topics to be taught in order for future citizens to make 
scientifically informed decisions about the consequences of human actions. A major challenge facing 
Earth science educators is how to develop and support rich science curricula with this new focus on core 
ideas. In ESAAF, students will learn about human-Earth interactions that include core concepts such as 
the water cycle to understand fresh water distribution, and the atmospheric greenhouse effect to 
understand climate change. Students will also develop scientific argumentation skills that enable them to 
make sense of scientists' data and models to explain the impact of human actions on Earth’s systems 
(Ledley et al., 2011).  

Importance of scientific argumentation. Scientific argumentation is identified as one of the eight 
scientific practices important for K-12 students in the NGSS (NGSS Lead States, 2013). Scientific 
argumentation involves making a claim from evidence about a scientific question based on the generally 
accepted scientific knowledge and research framework, and explicitly addressing boundaries of the 
claim's application (Toulmin, 1958). Engaging students in scientific argumentation can help students 
deepen the learning of science concept (Aufschnaiter et al., 2008), incorporate science epistemology into 
their learning (Jimenez-Aleixandre et al., 1999; Sandoval, 2003), engage in collaborative learning (Chinn 
& Osborne, 2010; Duschl & Osborne, 2002), and support decision-making (Kuhn & Udell, 2003). One 
aspect that has been overlooked in science education research, however, is how students treat uncertainty 
in formulating their scientific arguments (Bricker & Bell, 2008). As no scientific evidence can support a 
claim with 100% accuracy, any scientific argument has a potential for rebuttal. Therefore, in learning 
about the practice of scientific argumentation, students should not only need to coordinate evidence with 
relevant scientific theory but also need to properly address sources of uncertainty inherent in their 
scientific arguments. Uncertainty in students' argumentation could stem from students’ confidence in their 
understanding of knowledge and their ability to perform investigations (Metz, 2004). Uncertainty in 
students' argumentation can also resemble scientists' treatment of uncertainty focusing on limitations of 
current scientific knowledge base, experiments, equipment, and models (Lee et al., in press). Building on 
prior research (see Prior Results), we will include four components in assessing argumentation, such as 
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claims, explanations, student rating of uncertainty, and uncertainty rationale, which are described in more 
details in the assessment section.   
Importance of automated scoring of items with complex scoring rubrics. It is agreed among researchers 
that constructed-response items allow for a greater degree of construct representation and are more 
authentic than multiple-choice items (Lane, 2004; Lee et al., 2011; Shepard, 2000). However, as scoring 
constructed-response items is both costly and time-consuming (Wainer & Thissen, 1993), the use of 
constructed-response items is limited in both large-scale and classroom assessments. For example, 
national and international comparison assessments such as the NAEP and TIMSS largely make use of 
multiple-choice items due to efficiency and scoring considerations (Quellmalz et al., 2005; Singer et al., 
2006). Automated scoring could serve as a viable solution to scale up the use of constructed-response 
items. In addition to saving cost and improving efficiency, automated scores can also help reduce errors 
and biases typically introduced by human raters (Williamson, et al., 2012; Zhang, 2013).  

In the past three decades, automated scoring has been applied in a wide range of scoring domains, 
such as writing quality (Burstein & Marcu, 2002), mathematics (Sandene et al., 2005; Koedinger, 
McLaughlin, & Heffernan, 2010), written content (Graesser, 2011), and speech (Higgins, Zechner, Xi, & 
Williamson, 2011). Examples of automated scoring systems for content domains include c-rater™ and c-
rater-ML offered by ETS (Leacock & Chodrow, 2003), AutoMark (Mitchell et al., 2002), and Intelligent 
Tutoring Systems such as AutoTutor, ITSPOKE, and TLCTS (Graesser, 2011). Despite the growing 
application of automated scoring (e.g., Graesser, 2011; VanLehn et al., 2007), many previous uses focus 
on items that are either transformed from multiple-choice items or have simplified scoring rubrics (e.g., 
correct, partially correct, or wrong; Attali & Powers, 2008; Attali et al., 2008). Very few studies have 
evaluated automated scoring for items with complex scoring rubrics (Liu, et al., 2013). In ESAAF, we 
plan to enhance automated scoring of items with rubrics that differentiate among more than three levels of 
understanding. We will focus on automated scoring of items that measure argumentation in the context of 
climate change and fresh water availability. For the assessment results to be of diagnostic value to 
teachers, it is important to develop automated scoring that can accurately evaluate multiple levels of 
understanding. The automated scores will then be used to facilitate immediate feedback to students.    

Importance of immediate, automated feedback to facilitate learning and teaching. Educational experts 
consider feedback a critical element to catalyze learning (Black et al., 2003; Clarke, 2003; Hattie, 2009; 
Sadler, 1998). Several meta-analysis studies showed that the effect sizes of feedback are moderate to 
large in improving learning (0.40 to 0.80 standard deviation [SD] units) (Azevedo & Bernard, 1995; 
Kluger & DeNisi, 1996; Shute, 2008). Research also showed that for classroom studies students benefit 
more from immediate rather than delayed feedback (Anderson et al., 2001; Kulik & Kulik, 1988; Shute, 
2008). Immediate feedback will correct errors and misconceptions before they are encoded into students’ 
learning (Brosvic & Cohen, 1988; Corbett & Anderson, 1989, 2001; Dihoff et al., 2003), particularly in a 
computer-based instruction environment (Azevedo & Bernard, 1995; Shute, 2008). Despite its appealing 
benefits, instant feedback on constructed-response items is unrealistic in current classrooms (Gibbs & 
Simpson, 2004). In addition, scoring constructed-response items takes away teachers’ time from lesson 
planning and working with struggling students (National Council of Teachers of English, 2008).   

We will investigate when, how, for whom, and under what conditions feedback is most effective. 
The goals of ESAAF feedback are to promote students’ use of productive learning strategies, help 
students identify their misconceptions, and increase their persistence and experiences in learning science 
(Brown et al., 2012; Kluger & DeNisi, 1996). Some of the existing intelligent tutoring systems (e.g., 
AutoTutor, ASSISTments, DeepTutor) are conversational in nature and probe students’ responses after 
they type one word to two sentences, while the ideal answer is about three to seven sentences (Graesser et 
al., 2004). We will take a different approach by allowing students to complete their answers and 
providing feedback based on the evaluation of the entirety of student responses. Prior research shows that 
interrupting feedback provided when a student is engaged in problem solving may impede learning 
(Shute, 2008). Our feedback will pay attention to timing, complexity, delivery, and accuracy as these 
factors determine the effectiveness of feedback (Black & Wiliam, 1998; Crooks, 1988; Shute, 2008; 
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Sadler, 2010). Our feedback is intended to provide students with the opportunity to review their answers, 
point them to the relevant instructional steps, and allow them to revise their responses. As an 
improvement to most current intelligent tutoring systems (e.g., AutoTutor), we will go beyond the 
individual student and provide class-level information to the teachers.  We will design a synthesized 
report of the individual scores and feedback to give the teacher a snapshot of class-level performance. The 
immediate, class-level feedback is anticipated to help teachers make instructional decisions that are 
evidence-centered and data-driven. Additionally, we will offer professional development to promote 
teachers’ understanding of automated scoring and feedback as part of formative assessment practices.   

Project Goals. ESAAF responds to the national need for technology-enhanced, formative science 
assessments that support inquiry-based science teaching and learning. Both the Smarter Balanced and the 
PARCC consortia plan to use automated scoring to improve score efficiency (PARCC, 2012; SBAC, 
2012). Guided by argumentation theories and drawing on automated scoring technologies with proven 
validity (e.g., Sukkarieh & Blackmore, 2009; Sukkarieh & Pulman, 2005), we will use c-raterTM and c-
rater-ML, two advanced automated scoring tools developed by ETS, to score constructed-response items. 
We will provide immediate feedback containing diagnostics of individuals and class-level performance. 
The following are our research and development goals:  

1. Develop and validate automated scoring and feedback on formative assessments targeting climate 
change and fresh water availability for secondary school students; 

2. Investigate when, how, for whom, and under what conditions feedback can be effective in 
promoting learning along the dimensions of feedback type (e.g., content vs. epistemic; diagnostic 
only vs. diagnostic plus suggestive); 

3. Develop professional development resources to help teachers use automated diagnostics to 
improve instruction and assessment practices;  

4. Develop an interactive score reporting system that provides both customized individual feedback 
to students and class-level snapshots to teachers.  

Our partners are ETS, a leader in automated scoring and innovative assessment, the Concord 
Consortium (CC), a leader in developing and implementing technology-enhanced science curricula, and 
the University of California, Santa Cruz (UCSC), which will incorporate learning theories of 
argumentation in the context of earth science topics.  

RESULTS FROM PRIOR NSF SUPPORT 
Our prior and ongoing research on computer-based resources in assessment and learning puts us in a 
unique position to achieve our goals. Our research team will combine innovative tools and expertise in 
scientific argumentation, automated scoring, assessment, technological development, and professional 
development in achieving the research goals for ESAAF. We will draw specifically on the following 
NSF-funded projects: 

High-Adventure Science (HAS) (DRL-0929774. 9/15/09 – 8/31/12. $695,075. PI: Pallant). The HAS 
project developed and tested three online curriculum modules, including climate change, fresh water 
availability, and life on other planets for secondary school students to explore questions in ESS that 
scientists around the world are currently investigating. Each module was designed for five class periods 
and included interactive computational models, real-world data, and videos of scientists discussing their 
computational model-based research on the same questions. Building on literature on scientific 
argumentation (Bricker & Bell, 2008; Clark et al., 2007; Sampson & Clark, 2008), we assessed four 
essential parts of argumentation: claims, explanations based on the theoretical interpretation of evidence, 
uncertainty ratings, and uncertainty rationale as conditions of rebuttal. With this approach, we not only 
assessed students' scientific reasoning captured in the explanation component of argumentation but also 
evaluated students’ ability to articulate the uncertainties in their arguments, both considered critical in 
developing argumentation skills (Osborne et al, 2004). Our analysis results indicate that students made 
substantial improvement on claims and explanations (e.g., effect sizes being 0.40 and 0.70SDs) from pre 
to posttests, but their improvement in uncertainty rationale, although significant, was limited (e.g., 
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0.25SD), which points to the need for immediate teacher intervention that can be made possible through 
automated scoring and feedback. We will be using the climate change and the fresh water availability 
modules developed during the HAS project to test automated scoring and feedback interfaces in the 
ESAAF project.   

High-Adventure Science: Earth’s Systems and Sustainability (HAS:ESS) (DRL-1220756. 10/1/12 – 
1/31/16. $2.3M, PI: Pallant, Co-PIs: Lee and Norris). Based on promising results from the exploratory 
HAS project, the HAS:ESS project focuses on environmental science and is currently developing three 
additional modules for middle and high school students. The goal of HAS:ESS is to research the 
effectiveness of curriculum materials to reliably convey an understanding of Earth’s systems and the 
increasing role of human interaction with those systems, while also introducing important science 
practices of scientific argumentation through modeling and crosscutting concepts of systems and systems 
thinking. This project is built in partnerships among Concord Consortium, UCSC, and the National 
Geographic Society.  
 Two design studies were conducted to investigate whether conceptual and epistemic prompts 
provided before students formulated arguments could improve their argumentation. Students were 
randomly assigned to two versions of the same module within a teacher, with or without prompts in 
argumentation. Results indicate an interaction between effects of prompts and components of 
argumentation. For example, for the water module, while there was no significant difference in 
explanation (p=.38), there was a significant difference in uncertainty rationale (p< .001). These results 
indicate that pre-supplied prompts might not be ideal to help students improve their formulation of 
arguments. Extending from this study, we will investigate if prompts provided in the form of automated 
feedback would work more effectively in helping students construct an argument.  

Continuous Learning and Automated Scoring in Science (CLASS) (DRL-1119670, 09/01/2011-
08/31/2016, $2.5 million, Liu as Co-PI in charge of automated scoring and measurement). CLASS 
explores automated scoring for constructed-response items, concept maps, science narratives, and graph 
items. For example, both c-rater and c-rater-ML, content-based automated scoring tools developed by 
ETS, were used to score constructed-response items. After several iterations of rubric refinement, the 
agreement between c-rater scoring and human scoring was as high as .70 for c-rater and .78 for c-rater-
ML (Linn et al., 2012; Liu et al., 2013). The automated scoring engines are integrated with the WISE 
platform (https://wise.berkeley.edu/), a web-based science environment, to provide instant score and 
feedback to students (Liu et al., 2013).  

For c-rater scoring, a model answer is identified for the question at hand. The model answer 
contains a set of key concepts that c-rater uses to evaluate students’ responses. c-rater uses natural 
language processing techniques to identify alternative ways of student expressions. Based on the presence 
of the key concepts, c-rater assigns a score to students’ responses following a specified scoring rule. The 
following is an example of how c-rater was used to score the item Spoon: “A metal spoon, a wooden 
spoon, and a plastic spoon are placed in hot water. After 15 seconds which spoon will feel hottest? 
Explain your answer.” This item was scored by human raters using a four-level rubric that rewards 
students’ ability to make scientifically valid connections between concepts and ideas. Based on 
approximately 1,000 student responses, a c-rater analytic rubric was created consisting of six key 
concepts and their paraphrases (Fig 1), and a scoring rule (Fig 2). The quadratic-weighted kappa between 
c-rater and two human raters was as high as .70, higher than the agreement between two human raters 
after half a day of training (Linn et al., 2012).  

CLASS also pilot tested the effect of automated feedback with two teachers. Among the 258 
students included in the pilot study, 126 were in the teacher condition where they received feedback from 
the teacher on the next day, and 132 were in the c-rater condition where they received immediate, 
automated feedback. Results showed that the students in the c-rater condition were as likely to revisit and 
revise their responses (85%) as those in the teacher condition (87%).  More importantly, students in both 
conditions made significant and comparable gains through revising their answers (Teacher condition, 
effect size = 0.41SD, p<.001; c-rater condition, effect size = 0.38SD, p<.001).  



Earth Science Assessments with Automated Feedback (ESAAF) 5 

Fig 1. c-rater concepts for the item Spoon (only selected alternatives are presented due to space limit) 

C1: The metal spoon will feel the hottest, but it will still be the same temperature 
as all of the other spoons OR the metal spoon feels hotter than it actually is  
C2: The metal gets hot fastest OR heat will come to it fastest OR metal conducts heat 
fastest OR metal is the fastest conductor OR heat enters metal faster OR metal absorbs 
heat faster  
C3: Metal conducts the most heat OR more heat comes to the metal OR metal absorbs the 
most heat OR metal conducts heat more easily OR metal absorbs heat more easily  
C4: Metal heats up OR metal becomes hot OR metal gets hot OR metal gets hot easily OR 
heat will come to the metal OR metal absorbs heat OR metal absorbs heat easily  
C5:Metal attracts heat OR metal attracts the most heat Or metal attracts more heat 
C6: Heat stays in the spoon longer OR metal keeps the heat for the longest time OR 
heat stays in the spoon longer OR the metal conserves heat OR heat is more apparent in 
a metal object  

Fig 2. c-rater scoring rules for the item Spoon 

How ESAAF builds on all prior research. We will heavily 
draw on the three above-described NSF-funded projects in 
implementing ESAAF. We will use the curricula developed by 
the HAS and HAS:ESS projects, and use their validated 
scientific argumentation assessments to develop automated 
scoring and design feedback. We will also benefit from HAS 
and HAS:ESS’s established partnerships with teachers as the 
teachers have the opportunity to continue implementing the 
same modules in ESAAF. We will draw on the results from 

CLASS on automated scoring to further enhance automated scoring modeling for items with complex 
rubrics, investigate the effects of different feedback types on improving student learning, and study how 
automated scores can be used to facilitate individual and class-level feedback.  

RESEARCH AND DEVELOPMENT PLAN 

We will follow the Common Guidelines for Education Research and Development (IES & NSF, 2013) to 
plan our research and development. We will rigorously use three phases of research: feasibility studies, 
design studies, and a pilot study to investigate the effect of automated scores and feedback. Below we 
describe the curricula and assessments, participants, teacher professional development, research 
questions, and the quantitative and qualitative methods to address each question. We also discuss the 
development of the platform through which the automated scoring and feedback will be offered.  

Curricula, Assessments, and Scoring Rubrics  
As a curricular test-bed for automated scoring and feedback, we will use two online curriculum modules 
on climate change and fresh water availability, developed and tested in the NSF-funded HAS project (see 
Prior Support). These two modules were designed based on research on the use of authentic science 
practices in classrooms (Chinn & Malhotra, 2002; Lee & Songer, 2003), scientific argumentation 
(Berland & Reiser, 2009; Clark et al,., 2007; Erduran et al, 2004; Toulmin, 1958), and computational 
modeling (Pallant & Tinker, 2004; White & Frederiksen, 1998), and specifically addressed scientific 
uncertainty involved in scientists' data collection and model building (Allchin, 2012; NRC, 2012).   
  With the climate module, students explore factors that influence the Earth's future climate such 
as CO2, albedo, volcanic activities, and human produced greenhouse gases. Students use simple climate 
models to explore how greenhouse gases warm the planet. Students analyze the relative effects of positive 
and negative feedback to make a prediction for the future of Earth's climate. In the freshwater availability 
module, students use models and real world data to study the water cycle and evaluate the supply and 
demand for freshwater in various areas of the world. They use interactive models to explore the 
relationships between groundwater levels, sediment permeability, rainfall, recharge of aquifers and human 

4 points C1 and (C2 or C3 or C4) 
3 points  (C1 and [C2 or C3 or   
C4]) and C5 
3 points (C1 or C2 or C3)  
2 points (C1 or C2 or C3) and C5 
2 points C4   
1 point C4 and C5 
1 point C5 or C6  
1 point None  
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impact on groundwater levels. Students learn how water flows through sediments, how rates of recharge 
compare to rates of withdrawal, and how to assess the sustainability of water usage locally and globally.   
 Each module requires 5-6 class periods and includes a pretest, embedded assessments, and a 
posttest. Within each module, the pre and posttests are identical and include three sets of argumentation 
items Each scientific argumentation item set consists of a multiple-choice claim, constructed-response 
explanation, uncertainty rating on the five-point Likert scale, and constructed-response uncertainty 
rationale (see Fig 3 for a sample item). The embedded assessments in each module include eight 
argumentation item sets where students work with complex scientific data, simulations, and modeling to 
develop their arguments. All student responses to curriculum module assessments are stored 
electronically, which will facilitate the application of automated scoring. To assess students' scientific 
argumentation, in ESAAF we will continue to use the scientific argumentation item set format validated 
in prior studies (Lee et al., 2013; Pallant et al., 2012). Prior to students' argumentation, students will either 
encounter data collected by scientists or computational models (Fig 3 contains a computation model).  

Fig 3 (left). A climate 

model. The yellow arrows 
carry a unit of energy, which 
is converted into heat in the 
earth and ocean, which then 
can be converted into a unit of 
infrared radiation, represented 
by purple arrows. These 
interact with the CO2, 
represented by green dots and 
water vapor represented by 
blue dots. CO2 is added into 
the environment by the slider 
on the bottom which changes 
human emissions relative to 
the 2010 levels of emissions. 

 
Question: What happens if you remove all of the carbon dioxide from the atmosphere? 
Claim 
The temperature will 
      (a) decreases 
      (b) increases 
      (c) stays the same  
Explanation 
Explain how you made your prediction. 

Uncertainty rating 
How certain are you about your prediction for the air 
temperature in 2050? 
(1) not certain at all; (2), (3), (4), (5) very certain 

Uncertainty rationale 
Explain what influenced your uncertainty rating. 

All the constructed-response explanation and uncertainty rationale items will be scored using the 
following generic rubrics customized for each individual item, respectively (Tables 1 and 2), which were 
validated in HAS and HAS:ESS, with inter-rater reliability of .91 using both sets of rubrics.  

Participants, Sample Sizes, and Power Analyses 

Participants and sample sizes. We plan to recruit about 1,940 students taught by 20 teachers between the 
two modules over the four years of this project. The participants in the first two years will be from two 
schools in MA and CT. They were chosen because of their access to computers required by our research 
plan and proximity to the Concord Consortium for implementation support purposes. These first two 
schools serve a diverse student population. The Magnet School in Hartford, CT (see teacher support 
letter) has about 76% students of a racial/ethnic minority background and 99% of its students receive free 
or reduced-price lunches. The Belmont Public School in MA (see teacher support letter) serves suburban 
population with 20% of students of minority backgrounds and 8% of them receiving free and reduced 
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lunches. In subsequent years, we will recruit teachers on a national basis. Teachers with access to 
technology and who serve underrepresented students will be given priority for participation. In Years 1 
and 2, for each of the two modules, 120 students will participate in the feasibility studies taught by a 
teacher in MA and a teacher in CT (Table 3). In Year 3, a total number of 700 students will participate in 
the design studies, taught by 8 teachers from multiple states. In the last Year 4, 1,000 students from 10 
teachers will participate in the pilot study. Some students may complete both modules. 

Tables 1 and 2. Scoring Rubrics for the Explanation and Uncertainty Rationale Items, Respectively  

Score/Descriptor Criteria 
Score 0: Blank/Off-task Blank or irrelevant responses 
Score 1: Irrelevant Elicited non-normative ideas; Restated the claim selected or 

expressed; Incorrectly described the data 
Score 2: Relevant knowledge/evidence Correctly elicited one or more ideas listed above  
Score 3: Single warrant Correctly included two ideas mentioned above plus one of the 

links between the ideas 
Score 4: Two or more warrants Correctly included two or more links between valid idea  
 
Score  Uncertainty Source Characteristics of Students’ Rationale  
(Score 0) x No information No response; Irrelevant response; Restate the question  

Personal 
(Score 1) 

x Question Did/did not understand the question 
x General 

knowledge/ability 
Did/did not possess general knowledge or ability necessary in 
solving the question; Did/did not learn the topic (without 
mentioning the specific topic); Can/cannot explain/estimate 

x Specific 
knowledge/ability Did not know specific scientific knowledge needed in the item set 

x Difficulty with data Did not make sense of data provided in the item 
x Authority Mentioned teacher, textbook, and other authoritative sources 

Scientific-
within  

x Specific knowledge Referred to/elaborated a particular piece of scientific knowledge 
directly related to the item 

investigation 
(Score 2) 

x Specific data 
Referred to a particular piece of scientific data provided in the item 

Scientific- 
beyond 
investigation 
(Score 3) 

x Data/investigation Recognized the limitation of data provided in the item and 
suggested a need for additional data; Mentioned that not all factors 
are considered 

x Phenomenon Elaborated why the scientific phenomenon addressed in the item is 
uncertain 

x Current science Mentioned that current scientific knowledge or data collection tools 
are limited to address the scientific phenomenon in the item 

Power analyses. Statistical power analyses were conducted using the software program G*Power3 (Faul, 
Erdfelder, Buchner, & Lang, 2009). When conducting the power analysis, we considered different levels 
of effect sizes, as for a target power level, the required sample size changes with the desired effect size. 
Previous research on feedback has shown moderate to large effect sizes (0.40SD to 0.80SD) in improving 
learning (e.g., Azevedo & Bernard, 1995; Shute, 2008). To be conservative, we chose 0.25 as our target 
effect size (i.e., the lower the effect size, the greater number of students will be needed to achieve a 
certain power level). Our design studies in Year 3 (see the Research Question 2 & Table 3) will involve 
two experimental (i.e., automated scores with difference types of feedback) and one control conditions 
(i.e., automated scores without feedback). The design studies will achieve a statistical power of .95 at 
effect size of 0.25 with 700 students (350 for each module).  For our pilot study in Year 4 (also see 
Research Question 2 & Table 3), data from 1,000 students, 500 for each module, will be used to study 
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whether the effective feedback identified from the design studies should be offered with or without 
automated scores. The statistical power would be around .99 also for an effect size of 0.25.  

Teacher Professional Development  
Our researchers will pay frequent visits to schools during the week when the earth science instruction and 
assessment take place. Teachers will be able to review class-level performance on both embedded and 
posttest assessments through our synthesized reporting system. After-class meetings will be held with 
teachers of the same school to reflect on challenges with the technology, student reactions, and 
instructional modifications informed by the automated scores and feedback. The partner-teacher approach 
has been proven to be effective in improving teacher implementation of curriculum and assessment (Liu 
et al., 2011). Teachers will also decide the added value of automated feedback on items of different 
format. During the feasibility studies we will collaborate with teachers to create and refine feedback, 
considering student characteristics and relevance to instructional materials. We will work with teachers to 
investigate how information about student performance can be translated into effective science pedagogy. 

During the feasibility studies, we will work with teachers to identify and overcome possible 
challenges in implementing automated scores and feedback. We will also work with teachers on how to 
use the diagnostics for more effective instruction. For the design and pilot studies we will continue to 
provide professional development through summer workshops and online tools. Teachers will participate 
in the workshops in Years 2 and 3 to understand the strengths and limitations automated scores and how 
they can take advantage of automated scores and immediate feedback for improved instruction. For 
example, teachers currently lack timely access to students’ performance (Kerr et al, 2006; Shepard, 2000) 
and cannot make instructional decisions that are data driven. Automated scoring technology offers 
teachers the opportunities to use data to prioritize instructional activities. We will work with teachers to 
compare automated scores and teacher scores and discuss how automated scores may free teachers from 
the labor of scoring so that they can focus on instructional improvements.  

Automated Scoring  
ESAAF will develop automated scores using both c-rater and c-rater-ML. Both are automated scoring 
engines developed at ETS for scoring short-text items. c-rater has been supported by abundant research 
evidence, and has been used for many important assessments, including the NAEP Science Interactive 
Computer Tasks (e.g., Leacock & Chodorow, 2003; Sukkarieh & Pulman, 2005; Sukkarieh, Pulman, & 
Raikes, 2003; Sukkarieh, 2010). c-rater evaluates open-ended  responses based on a set of clear, distinct 
concepts (Sukkarieh & Blackmore, 2009). The accuracy of c-rater scores depends on the cognitive skills 
and linguistic complexity of the responses. c-rater scoring involves four major steps: (a) model building, 
by which researchers identify one or more model responses which contain key concepts for the item; (b) 
natural language processing (NLP), by which student and model responses are analyzed for linguistic 
features using NLP skills or knowledge representation skills; (c) main points identification, by which the 
linguistic features are used to determine the absence or presence of a key concept in the student 
responses; and (d) scoring, by which a score is assigned to a response based on the specified scoring 
rules. See CLASS in Prior Support for an example of c-rater scoring. In addition to an overall score, c-
rater also provides scores for each concept, which can be used in feedback to students.   
 While c-rater scores open-ended responses deductively based on input from pre-assigned 
structures of concepts, c-rater-ML scores inductively by learning patterns in constructed-response item 
responses. c-rater-ML is based on modern machine learning technology and partially alleviates c-rater’s 
need for response-specific work. c-rater-ML is based on a design in which numerous individual predictors 
of scores or features are generated, usually using supervised machine learning capabilities. As a relatively 
recent development, c-rater-ML was ranked top five among 140 international teams in the 2012 Hewlett 
Foundation’s Short Answer Scoring Competition. For the purpose of this proposal, we pilot tested 1,027 
student responses to the sample item in Fig 3 using c-rater-ML. The quadratic-weighted kappa was .80 
for the explanation part and .70 for the uncertainty rationale part, indicating high agreement between 
human and machine scores (Williamson et al., 2012). The pilot results suggest that the earth science 
assessments we will be working with have great potential for automated scoring. The c-rater and c-rater-
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ML platforms will be integrated with Concord Consortium’s existing curriculum and assessment platform 
for providing immediate scores and feedback.  

Automated Scoring and Feedback System  
In the proposed project, an interactive assessment and score reporting system will be created to support 
the automated scoring and feedback. It will be developed as a platform that can be also used for other 
science content areas beyond the topics investigated in this study. We will capitalize on the Concord 
Consortium’s existing web portal and score reporting system developed by for the NSF-funded HAS and 
HAS:ESS projects (see Prior Support). We will integrate the  Concord Consortium’s portal system with 
the ETS automated scoring systems (c-rater, c-rater-ML) for constructed-response items, develop the 
capability to deliver instant automated scores to students, provide automated feedback on both multiple-
choice and constructed-response items, and create a class-level reporting system for the teachers. Concord 
Consortium’s current portal system includes an authoring system for developing online curriculum 
materials, interactive computational models, embedded assessments, and summary reports. It also 
provides class trajectories of student work and identified data for research uses.  

Customized feedback. We will enhance the auto-feedback function to include constructed-response items. 
We will incorporate technological tools developed in the HAS project for feedback (see Prior Support). 
Currently those tools provide feedback to students at point of use. For example, students click a “check 
answer” button on multiple-choice items when they submit their answers (Fig 4). A message box pops up 
with feedback developed by the activity author. The feedback typically includes instruction for revisiting 
models, and/or hints as well as acknowledgement of correct responses. We will incorporate these features 
for constructed-response items as well as adding concept-based feedback, capitalizing on c-rater’s 
concept-based scoring.  

 

 

Class-level snapshot. We will also improve Concord Consortium’s current reporting system to provide 
both at-a-glance indicators of students’ performance and document learning progressions. Currently 
teachers can have real-time information on student completion of any given activity (Fig 4). Teachers also 
have instant access to class-level performance distributions on MC items (Fig 5). We will extend the 
system to including constructed-response items, and will create a class-level snapshot at both the item and 
the assessment level (Fig 6). 

Progress monitor. We will develop methods for displaying the progresses students made through the 
activities, which will visually represent changes in student performance from pre, embedded, to posttest 
on the same items. Additionally, we will monitor students’ interaction with the assessment system and 
track their answer-changing behavior as result of feedback. 
 

Figs 4 & 5. Exemplar feedback to a MC response (L) and snapshot of student activity completion (R) 
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The system will also document the frequency of 
each feedback delivery. All this information can 
be of great value for teachers as they identify 
areas in which students are having difficulties. 
Teachers can then revise instruction to 
effectively address problematic concepts. We 
will draw on the infrastructure developed for the 
NSF-supported HAS projects (see Prior 
Support). In addition, to cater to the increasing 
variety of operating systems, and we will 
enhance technological capabilities to deliver 
materials for computers, tablets, and other 
operating systems.  

Research Questions (RQ)              

RQ 1: To what extent can automated scoring tools such as c-rater and c-rater-ML, diagnose students’ 

explanations and uncertainty articulations as compared to human diagnosis? 
In Years 1 and 2, we will develop and evaluate the accuracy of automated scoring for the climate change 
and fresh water availability modules, respectively. Specifically, we will apply the automated scoring 
technology to students’ responses (n >1,000) to the constructed-response explanation and uncertainty 
rationale items created and validated in the NSF-funded HAS and HAS:ESS projects. 
 We will examine how well scores generated by automated scoring methods agree with human 
scores. Multiple criteria will be used to evaluate the quality of automated scores, including the (a) 
quadratic-weighted kappa, (b) Pearson correlation, (c) degradation of the human/machine score 
agreement from the human/human score agreement, and (d) standardized mean score difference between 
the machine scores and human scores. The Kappa coefficient indicates the proportion of agreement 
beyond that expected by chance and is scaled to range from -1 to 1, with -1 indicating poorer than chance 
agreement, 0 pure chance agreement, and 1 perfect agreement. We plan to adopt the Landis and Koch 
(1977) rules for the strength of agreement for the Kappa coefficient: poor (������� VOLJKW� ���� -.20), fair 
(.21-.40), moderate (.41-.60), good (.61-.80), and very good (.81-1.00). The degradation value represents 
the difference in agreement between human/human and human/automated scores. The introduction of 
degradation recognizes the dependence of the performance of automated scores on human scoring 
agreement. The degradation of automated scoring agreement from human agreement should not be more 
than .10 as a guideline for operational practice (Williamson et al., 2012). The standardized mean score 
difference between the automated and human scores is another criterion indicating the performance of 
automated scores. Standardization ensures that the two sets of scores are compared on similar scales, and 
should not be more than .15 (Williamson et al., 2012). 

After the automated scoring models are established, we will implement the automated scoring in 
classrooms as part of the feasibility studies in Years 1 and 2 for the two modules, respectively. For each 
module, we will work with two teachers and approximately 120 students to implement the week-long 
curriculum and test the feasibility of automated scoring. We will randomly split students within a teacher 
into the automated scoring and immediate feedback condition, and teacher score and delayed feedback 
condition. We will use independent sample t-tests to compare students’ review and revision behavior and 
also score gains as a result of revision after receiving feedback. These studies will provide evidence of 
feasibility of implementation by showing that teachers can implement the modules with the automated 
scoring in a classroom setting.  
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RQ 2: How should feedback be designed and delivered to help students improve scientific 

argumentation? How does students’ use of feedback relate to their learning progression during 

instruction and learning outcome at the end of instruction? Should feedback be offered with or without 

scores?  
Literature shows that the effects of feedback are significantly determined by the feedback type and 
delivery method (Anderson, Magill, & Sekiya, 2001; Kulik & Kulik, 1988; Shute, 2008). In order to 
determine the optimal type of feedback that can maximize student learning, we will conduct two design 
studies in Year 3 to investigate how students use different types of automated feedback during the 
instruction, and what learning outcomes emerge from these varied uses. Each study will have two 
feedback conditions, and a control condition to which students within a teacher will be randomly 
assigned. Students in the control condition will learn the module without feedback, but will be told that 
they can review and revise their answers during assessment. To eliminate the possible negative impact of 
students receiving lower scores, students will only see the feedback without the scores, but note that the 
automated scoring technology is required for the offering of the feedback. In Year 4, we will conduct a 
pilot study to implement the automated feedback proven to be effective based on the results from Year 3, 
and test whether feedback should or should not be offered with autoscores.  

Design Study 1: Automated content feedback vs. automated epistemic feedback. Open-ended writing is 
required in explanations and uncertainty rationale in our argumentation items. As in any scientific writing, 
student writing for explanations and uncertainty rationale can be conceived to occur in content and 
rhetorical spaces (Bereiter & Scardamalia, 1987). Writing in the content space refers to theoretical and 
empirical bases that validate the argument, while writing in the rhetorical space refers to the structure and 
the requirements related to an effective argument. In the literature, the distinction in supports built for 
content and for rhetorical spaces is sometimes made as generic (content-independent) versus specific 
(content-dependent). In argumentation research, writing in the rhetorical space is often referred to as 
epistemic practice (Sandoval, 2003). The literature debates about which type of scaffolds is more 
effective in improving students’ open-ended explanations (Butcher & Kintsch, 2001; Davis, 1998). As a 
first design study, we will investigate how automated content and epistemic feedback are used by 
students, how they help students formulate arguments, and which feedback is more effective. 

x Automated content feedback will provide content-related diagnostic information. Example: “You 
recognized the importance of the reflection of sunlight by the Earth’s surface (albedo), but did not 
elaborate how albedo affects temperature.” 

x Automated epistemic feedback will provide rhetorical diagnostic information about students’ 
level of explanations and uncertainty rationale such as "In your explanation, you restated your 
claim but did not include data," or "In explaining your uncertainty, you mentioned about your 
ability or knowledge, but did not mention uncertainty related to models."    

Design Study 2: Automated diagnostic feedback vs. automated suggestive + diagnostic feedback. After 
the design study 1, we will determine whether to focus on content or epistemic feedback. In the design 
study 2, we will determine whether the content or epistemic feedback should be given in a form of 
diagnostic or diagnostic plus suggestive feedback. Diagnostic feedback contains information regarding 
students’ ability to explain the claim and articulate sources of uncertainty. Suggestive feedback, in 
addition to the diagnosis of student performance, also points students to instructional steps in the climate 
change and fresh water availability modules that are relevant to the assessment task at hand. The 
effectiveness of suggestive feedback is reported in some existing studies (Black & Wiliam, 1998; Narciss 
& Huth, 2004), but it is unknown if the conclusion remains true when the automated feedback is 
involved.   

x Automated diagnostic feedback will show students their level of explanations and uncertainty 
rationale according to the scoring rubrics described in the Curricula, Assessments and Rubrics. 
Rubrics for explanations and uncertainty rationale have been tested in a series of large scale 
scientific argumentation assessment trials with a reliability of .91.  
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x Automated diagnostic+suggestive feedback will show students their level of explanation and 
uncertainty rationale, as well as where in the climate change or fresh water modules they can get 
more information. Example: “You recognized the reflection of sunlight by the Earth’s surface is 
important in determining global temperature changes but did not explain how. To know more 
about this, go back to this activity step (hyperlinked text to the related activity step).”   

In Year 3, a total of eight teachers and their students (approximately n=700) will participate in the design 
studies. We will administer the identical pre/posttests and embedded assessments to students. Automated 
feedback will be provided for both embedded and posttests but not for pretests, as the pretest scores will 
be used as a control for prior learning. We will compare the two feedback and control groups on (a) 
review and revision behavior (e.g., frequency), (b) revision outcomes on both the embedded and posttest, 
and (c) pre/posttest gains using both initial and revised posttest scores. Since each design study involves 
two feedback and one control groups, we will use an ANOVA to investigate any possible differences in 
the outcomes described above. We will analyze the interaction between student science ability as 
measured by the pretest and the feedback effects. In addition, we will interview a small group of students 
in the feedback conditions to understand their experiences with the automated feedback, and their 
perceived usefulness of the feedback. We will analyze students’ actions after receiving feedback (e.g., 
going back to the instructional steps as suggested by the feedback). We will study students’ review and 
revision patterns on multiple-choice and constructed-response items to see if there is any differential 
effect of feedback. Thusly, our automated feedback will be continuously refined through the results of the 
design studies.  

Pilot Study: Effective feedback with or without automated scores. The feedback identified to be 
effective from the above-mentioned design studies will be implemented at a larger-scale among students 
in Year 4. In addition, as literature suggests that students may be discouraged by grades or scores (Butler, 
1987; Shute, 2008), we will test the effect of automated feedback with or without automated scores or 
grades on individual items. A total of 10 teachers and their students (n=1,000) will participate in the pilot 
study. Students within a teacher will be randomly assigned to the two feedback conditions: feedback only 
or feedback plus scores. We will compare their review and revision behavior using independent sample t-
tests. We will also compare students’ improvements on embedded assessments and pre/post gains after 
they receive automated feedback with or without scores. We plan to use ANCOVA to investigate student 
learning progressions with posttest scores as the outcome variable, feedback condition as a fixed factor, 
and various covariates including pretest scores, gender, language, and grade.  

RQ 3. How do teachers use automated scores and feedback to improve their instructional practices? 

How do teachers’ conceptions change about automated scores and assessment?  
We will adopt both qualitative and quantitative approaches to address the research questions. We will 
conduct a survey asking about teachers’ perceptions of automated scores and feedback both before and 
after the implementation of the curriculum and assessments in the feasibility, design, and pilot studies. 
We will analyze the differences in teachers’ perceptions. We will conduct classroom observations during 
the feasibility and design studies to understand how teachers use the class-level automated feedback to 
modify and improve instruction. For example, if the autoscores and feedback suggest that a large portion 
of the students demonstrate misunderstanding of a certain concept, will the teacher take immediate 
actions to revisit the instructional step relevant to that concept? We will interview teachers to learn about 
how feedback interacts with teachers’ pedagogical practices to produce better learning. We will also elicit 
teachers’ input and opinions on how to design professional development resources to help them use the 
technologies. In professional development workshops in Years 2 and 3, we will provide ample 
opportunities for teachers to understand automated scoring, help design effective feedback, and exchange 
ideas about how to use the information at the class-level. We will also help teachers understand how to 
assess argumentation embedded in the science topics we chose. We will link the observation and teacher 
survey data with student learning outcomes to investigate how teachers’ different uses of automated 
scoring and feedback are associated with student learning outcomes at the end of each module. 
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 In addition, the interactive system ESAAF will give teachers access to both class-level and 
individual performance records. Teachers will also be able to share insights, student progress, and 
implementation plans with fellow teachers, and discuss challenges and experiences. We will also elicit 
teacher opinions on the most valuable features about the score reporting system. One of the great 
challenges of effective teaching is teachers’ lack of real-time student data (Sisk-Hilton, 2009). Automated 
scoring and feedback relax the constraint so that the assessment, instruction, and learning processes can 
be streamlined for improved efficiency. 

EVALUATION AND EXTERNAL REVIEW 

This project plans to be ably reviewed, advised, and evaluated by the leading experts and practitioners in 
the field. These include Charles Anderson, (Professor, Michigan State University), Mark Shermis 
(Professor, University of Akron), Ayita Ruiz-Primo (Associate Professor and Director, University of 
Colorado, Denver), Xiufeng Liu (Professor, State University of New York, Buffalo), and Rick Dees 
(Science teacher of 19 years, Huntley Project High School). The research team will elicit advisor 
expertise in automated scoring (Shermis), feedback (Anderson, Ruiz-Primo, Dees), psychometrics (Liu, 
Ruiz-Primo), earth science content (Anderson, Dees), and assessment (Anderson, Liu, Ruiz-Primo).  

We intend to have two advisory panel meetings each year, one through videoconference and one 
face-to-face meeting to discuss updates, evaluate progress, and plan for next steps. Xiufeng Liu will 
assume the role of external evaluator. Dr. Liu has extensive experiences in science assessment, science 
instruction, and measurement, and is currently co-editor of the Journal of Research in Science Teaching. 
Dr. Liu will independently monitor project progress compared to the timeline specified in the proposal, 
evaluate the quality of assessments from both psychometric and content perspectives, review the scoring 
rubrics, and review the psychometric analysis. Dr. Liu is also anticipated to evaluate the reports, 
presentations, and materials produced from this project. The evaluator will participate in monthly 
management and evaluation meetings for project updates, and provide feedback on how to effectively 
execute the research goals. The evaluator will also participate in annual face-to-face project meetings, and 
work with the advisory panel members in providing recommendations to the research team regarding 
project progress.  

DISSEMINATION 
This project is intended to create a rich legacy of assessments, rubrics, feedback, and professional 
development materials. We will proactively disseminate the research findings from this project. We will 
use multiple methods to reach a wide audience, including a website, presentations, research reports, 
journal articles, Wiki pages, and Facebook groups. The website will feature free assessment items, rubrics 
for both human and automated scoring, and links to project papers, reports, and presentations.  The 
assessments, rubrics, design principles, and technologies will be open source through the ETS and CC’s 
project websites. To reach multiple stakeholders, we will make presentations at national conferences such 
as AAAS, AERA, NCME, ICLS, and NARST. We also plan to participate in policy forums and author 
articles for high-circulation journals such as Science, Educational Researcher, Journal of Research in 
Science Teaching, and Journal of the Learning Sciences. 

BROADER IMPACTS 

The automated scoring and feedback system developed in ESAAF has great potential to transform science 
teaching and learning through formative assessments at multiple levels. At a proximal level, the online 
curriculum modules used in ESAAF will be empowered by automated scoring and quality feedback 
technologies and will be made available for free to all future learners, teachers, and researchers beyond 
the research participants outlined in this proposal. In 2013 alone, over 16,000 students taught by 75 
teachers have used our curricula without explicit support of the project staff, and the numbers are 
expected to increase significantly when new features of automated scores and feedback are incorporated 
with purposeful dissemination and support. The effective feedback identified from this project can also be 
used by teachers with or without the automated scores. At a macro level, the automated scoring and 
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feedback approach provide a model on how formative assessments can be integrated into learning 
opportunities. Such integration is currently hindered in many classrooms due to the lack of timely 
feedback on formative, constructed-response assessments. At the national level, the goals of the ESAAF 
project are closely aligned with those of the Race to the Top initiative in that both the Smarter Balanced 
and the PARCC consortia are exploring how to take advantage of automated scoring to increase the use 
and value of formative assessment. 

Table 3. ESAAF Research and Development Timeline 

YEAR 1 YEAR 2 YEAR 3 YEAR 4 
AUTOMATED SCORING (AS)  
Develop AS for 11 
explanation and 11 
uncertainty rationale 
items for climate change 

Develop AS for 11 
explanation and 11 
uncertainty rationale 
items for fresh water 

Refine AS for both climate 
change and fresh water 
modules 

Finalize AS for both 
climate and fresh water 
modules 

FEEDBACK 
Design feedback for 11 
explanation and 11 
uncertainty rationale 
items for climate change 

Design feedback for 11 
explanation and 11 
uncertainty rationale 
items for fresh water 

Refine feedback for both 
climate change and fresh 
water modules 

Finalize feedback for both 
climate and fresh water 
modules 

RESEARCH 
Feasibility study to see 
if AS and feedback 
work for climate 
change; Evaluate 
automated vs. teacher 
feedback; Teacher 
(n=2);  
Student (n=120). 

Feasibility study to see 
if AS and feedback 
work for fresh water; 
Evaluate automated vs. 
teacher feedback; 
Teacher (n=2);  
Student (n=120). 

Design studies to identify 
effective feedback through 
random assignment (i.e. 
content vs. epistemic and 
diagnostic vs. 
diagnostic+suggestive); 
Teacher (n=8; 4 for each 
module); Student (n=700). 

Pilot study to see if 
effective feedback 
should be offered with or 
without scores; Teacher 
(n=10; 5 for each 
module); Student 
(n=1,000). 

PROFESSIONAL DEVELOPMENT  
Elicit teacher input in 
feedback design  

Summer workshop for 
the 8 teachers who will 
participate in the design 
studies, to familiarize 
them with automated 
scoring and feedback 

Summer workshop with the 10 
teachers who will participate 
in the pilot study in Year 4 

Ongoing support of 
teachers’ use of 
automated scores and 
feedback in formative 
assessment  
 

TECHNOLOGY INNOVATIONS 
Develop platform; 
Integrate ETS 
autoscoring & CC 
assessment system 

Incorporate auto 
feedback into platform; 
Develop class-level 
snapshot for teacher 
review 

Improve platform’s delivery of 
scores and feedback for both 
students and teachers 
 

Refine platform 
features on review and 
revision 
 

 

EXPERTISE 

ESAAF collaborators include Educational Testing Service (ETS), Concord Consortium (CC), and 
University of California, Santa Cruz (UCSC). ETS, a non-profit educational organization and a world-
class leader in assessment, automated scoring, and measurement research, is the lead institution, and will 
be responsible for the development of automated scoring, research design, quantitative analyses, financial 
oversight, and overall project performance. Amy Pallant at CC will be the Co-PI responsible for 
technology development, assessment review, and professional development. Hee-Sun Lee at UCSC is the 
Co-PI responsible for assessment and feedback development, participating in research studies, and 
coordinating with ETS and CC on professional development. The diverse expertise and rich 
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experiences our collaborators bring to ESAAF are expected to significantly contribute to the successful 
implementation of this project. ETS plans to actively coordinate with the partners to ensure the project 
meets its goals and objectives on time. We intend to have bi-weekly teleconferences among key partners 
to report updates, discuss potential challenges, and plan for next steps. In the meetings we plan to use 
videos to display technological systems if needed and use Google Drive to share materials. ETS will have 
weekly internal staff meetings gathering updates on milestones and deliverables. In addition to these 
meetings and the advisory board meeting mentioned above, we’ve budgeted professional development 
workshops in the summers in Years 2 and 3 to provide training to teachers on the use of automated scores 
and feedback and discuss how the diagnostic information can be used to improve instruction. 

Ou Lydia Liu, ETS; PI. Dr. Liu is Managing Senior Research Scientist at ETS. She will oversee the 
research design, automated scoring, and quantitative analyses, and be responsible for the overall progress 
of the project. Dr. Liu is currently Co-PI on three NSF-funded, five-year projects concerning innovative 
science assessment and automated scoring. She has published more than 30 articles in top measurement 
and science education journals. She received the ETS Presidential Award for outstanding research in 
2008, and the Jason Millman Promising Measurement Scholar Award from the National Council on 
Measurement in Education in 2011. Dr. Liu holds a PhD in Quantitative Methods and Evaluation at the 
University of California, Berkeley.  

Amy Pallant, CC; Co-PI. She will be responsible for technology development, feedback development, 
assessment review, and professional development of the project. She will direct the development of the 
synthesized assessment and scoring report system, and coordinate the technology development with ETS. 
She is the PI for the NSF-funded HAS and HAS:ESS projects (DRL-1220756, DRL-0929774). She has 
been the project manager, educational researcher, and curriculum developer on the award winning 
Molecular Workbench projects. Amy holds an M.A. in Science Education from Harvard and a B.A. in 
Geology from Oberlin College. 

Hee-Sun Lee; UCSC; Co-PI. Dr. Lee will be responsible for assessment and feedback development, 
participating in research studies, and coordinating with ETS and CC on professional development. Dr. 
Lee is currently an Adjunct Associate Professor at the UCSC. She specializes in inquiry-based curriculum 
and assessment development and evaluations of innovative curriculum materials.  She is Co-PI on an 
NSF-funded project (DRL-1220756) on the HAS:ESS, and directed a large-scale NSF-funded assessment 
research program at the Technology-Enhanced Learning in Science (TELS) Center. She earned a Ph.D. in 
Science Education from the University of Michigan. 

Katrina Crotts Roohr; ETS; Quantitative Scientist/Psychometrician. Dr. Roohr is an Associate 
Research Scientist at ETS. She will assist in the research design and quantitative and psychometric 
analyses for this study. Dr. Roohr holds an Ed.D. in Psychometric Methods, Educational Statistics, and 
Research Methods from the University of Massachusetts Amherst. Prior to her graduate studies, she 
received a B.A. degree (with honors) in Psychology with minors in Mathematics and Spanish from 
Westfield State University.  

Mike Heilman, ETS; Automated Scoring Scientist. Dr. Heilman’s research includes various 
applications of natural language processing and machine learning to educational problems, including the 
analysis of argumentation, the detection of grammatical errors, and the scoring short answer questions. He 
is currently the chief automated scoring scientist for the CLASS project (see Prior Support). He received a 
Ph.D. in Language and Information Technologies from Carnegie Mellon University.  Prior to his graduate 
studies, he received a B.S. degree (with honors) in computer science and a B.A. degree (with honors) in 
Japanese language, both from the University of Notre Dame. 

John Blackmore; ETS; Automated Scoring Engineer. Blackmore is Lead Software Developer at ETS. 
He will be responsible for rubric review for automated scoring, building automated scoring models, and 
statistical analysis of the agreement between human and machine scores. He is the lead automated scoring 
engineer for the NSF-funded CLASS project (DRL-1119670).  
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