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ABSTRACT
The Bayesian knowledge tracing (BKT) model is a popular
model used for tracking student progress in learning sys-
tems such as an intelligent tutoring system. However, the
model is not free of problems. Well-recognized problems in-
clude the identifiability problem or the empirical degeneracy
problem. Unfortunately these problems are still poorly un-
derstood and it is not clear at all how to deal with them.
The origin of these problems boils down to the difficulty to
answer the question “how to best determine the four BKT
parameter values, given the student activity data?”. Here,
we analyze the mathematical structure of the BKT model,
identify a source of the difficulty, and construct a simple
Monte Carlo BKT model to analyze the problem in real
data. Using the student activity data obtained from the
ramp game module at the Concord Consortium, we find that
such a Monte Carlo BKT analysis is capable of detecting the
identifiability problem and the empirical degeneracy prob-
lem, and, more generally, gives an excellent summary of of
the student data. In particular, a useful by-product of this
work is the identification of a student activity monitoring
parameter M .

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-

sures, performance measures

General Terms

Bayesian knowledge tracing, fit, regression, educational data
mining

1. INTRODUCTION
The Bayesian knowledge tracing (BKT) model [5] is widely
used in the context of educational data mining [3, 4, 2, 6, 9].
It offers a simple model in which the student knowledge can
be estimated as the student activity is scored in a structured
online environment such as an intelligent tutoring system.

However, a major problem is that estimating student knowl-
edge is often ambiguous, and a general method to overcome
such ambiguity is not known. Recognizing this issue be-
gan with seminal papers by by Beck and Chang [3, 4], who
pointed out that the BKT model, while important in the
field of student modeling, suffers from a fundamental “iden-
tifiability problem.” Namely, completely different sets of pa-
rameters can produce the same student performance curve.

While solutions to this well-recognized problem were sought,
another type of problem, the “empirical degeneracy” prob-
lem has been pointed out as well—sometimes the model
would seem to predict low knowledge on high performance
or high knowledge on low performance. Contextualizing cer-
tain parameters [1] or limiting the ranges of slip and guess
parameters of the model has been put to practice, to avoid
these problems, and a theoretical analysis [9] has been pre-
sented. However, it remains unclear what it actually means
to avoid this problem by restricting parameter values by
hand.

Here, we analyze the BKT model from a simple mathemat-
ical point of view. This analysis sheds light on the identifia-
bility problem, as it clearly shows that there is an underlying
parameter degeneracy in the BKT theory. While this degen-
eracy has been understood by similar mathematics recently
[9], we differ completely in the assessment of this issue in
a real data setting. Our main message here is the finding
that we must take this parameter degeneracy into account



when applying the BKT model to describe real situations.
Considering this degeneracy, we propose that a new param-
eter, M (to be defined in Eq. 6 below), should play a central
role in summarizing BKT analysis results. This parameter
plays the role of summarizing the overall trend of the stu-
dent activity. So, M may provide an important diagnostic
parameter during real time activities. In addition, M is also
related to the identifiability problem and the empirical de-
generacy problem.

In this paper, we combine theoretical analysis, new algo-
rithm, and data analysis. The new algorithm is a simple
Monte Carlo BKT model, which gives a wealth of informa-
tion when applied to the analysis of real data. The data
are taken from the student activity data obtained from the
“ramp-game module” of the Concord Consortium [7].

2. THE BKT MODEL IN THEORY
We shall briefly review the BKT model, with a focus on its
mathematical structure.

2.1 The BKT model
The BKT model has been proposed by Corbett and Ander-
son[5]. This model involves four parameters, each of them
having the numerical range from 0 to 1.

p(L1) This is the initial knowledge that a student has prior
to taking on any learning activities.

p(T ) This is probability that the student will transition
from an unknowing state to a knowing state, as the
result of using the knowledge during a unit of activity.

p(G) This is the “guess parameter” that corresponds to the
probability that the student will choose the correct an-
swer in an activity, while the student has not acquired
the required knowledge.

p(S) This is the “slip parameter” that corresponds to the
probability that the student will choose an incorrect
answer in an activity, while the student has acquired
the required knowledge.

Here, we define n as the activity index. Then, p(Ln) is
the knowledge level estimated right before activity n (or,
equivalently, after activity n−1). The activity index n goes
from n goes from 1 to N , the total number of activities.

Another important curve as a function of n is given by p(Cn),
which is the probability that the student will get the correct
answer at activity n. So, p(Cn) is the student performance
curve, while p(Ln) is the latent knowledge.

The unobservable latent knowledge, p(Ln), and the observ-
able student performance, p(Cn), are predicted in parallel
by this model, and it is by fitting the observed performance
data with the theoretical p(Cn) curve that one can infer the
student knowledge. As the student goes through activities,
the typical outcome is that p(Ln) increases—however, the
model also allows the opposite case in which p(Ln) decreases
as n increases.

The knowledge parameter is updated according to the fol-
lowing equation

p(Ln+1) = p(Ln|E) +
(

1− p(Ln|E)
)

p(T ) (1)

where p(Ln|E) is the posterior probability that the student
has the knowledge given the evidence E. Here, the evidence
is the student score. The posterior probability is given by
the Bayes theorem:

p(Ln|Cn) =
(1− p(S)) · p(Ln)

p(Cn)
, (2)

p(Ln|In) =
p(S) · p(Ln)

1− p(Cn)
. (3)

Here, p(Cn) is the probability that the student will get it
right for activity n, and is given by

p(Cn) = p(Ln) · (1− p(S)) + (1− p(Ln)) · p(G), (4)

and p(In) = 1 − p(Cn) is the probability that the student
will get it wrong.

2.2 The BKT model without measurement
Here, we envision a theoretical process. Suppose that a BKT
process as described in the previous section goes on, but
the student withholds her/his answers. From the point of
view of an educational researcher who likes to assess the
learning, then, there are no data to analyze, since there are
no “measurements” in the form of student provided answers.

Now, even in such a theoretical case, it is clear that the
student likely is acquiring knowledge, as long as the student
is engaged.

What would be the description of the student knowledge in
such a case? While only a theoretical description is possible
in such a case, the description has the benefit of being“noise-
less,” not suffering from statistical noises1 that are part of
the measurement process.

We call this situation as using“the BKTmodel without mea-
surement.” This situation corresponds to that considered by
Beck and Chang [3, 4]. The level of the mathematical anal-
ysis required for this problem is basic, and it seems that
the first published solution is due to van de Sande [9], with
which our solution agrees.

In this measurement-less situation, the theoretical value for
p(Cn) is the best estimate of the real student performance.
Also, it is most reasonable to put p(Ln) equal to p(Ln|E).
Then, Eq. 1 turns into a simple recursion relation

p(Ln+1) = p(T ) + (1− p(T ))p(Ln). (5)

The subsequent geometric series for p(Ln) can be readily
summed up, and this also makes it possible to express p(Cn)
(Eq. 4) in a closed form. The results are the following.

M ≡ (1− p(S)− p(G)) · (1− p(L1)) , (6)

p(Cn) = 1− p(S)−M · (1− p(T ))n−1 , (7)

p(Ln) = 1− (1− p(L1)) (1− p(T ))n−1 . (8)

1It is important to note that these statistical noises are due
to the fundamental statistical nature of events, whether or
not there is a finite value for p(G) or p(S).



Model p(L1) p(T ) p(G) p(S) M
1 0.56 0.1 0.00 0.05 0.418
2 0.36 0.1 0.30 0.05 0.416
3 0.01 0.1 0.53 0.05 0.4158

Table 1: The values of the BKT model parameters
used by Beck and Chang[3, 4] to generate curves
shown in Fig. 1 to demonstrate the “identifiability
problem” of the BKT model without measurement.
The last column for a new parameter M (Eq. 6) is
added in this work. All numbers are presented, as-
suming infinite precision.

If we define

nT ≡ −
1

log(1− p(T ))
(9)

then we can re-write our results for p(Cn) and p(Ln) as

p(Cn) = 1− p(S)−Me−(n−1)/nT , (10)

p(Ln) = 1− (1− p(L1)) e
−(n−1)/nT . (11)

So, nT tells us how fast or slow p(Cn) and p(Ln) approach
their respective asymptotes, 1 − p(S) and 1. It is a scale
parameter that represents the order of magnitude for the
number of activities required in order for the learning to be
perfected.

These results clearly explain the origin of the identifiability
problem of the BKT model without measurement. While
the theory has four parameters, p(Cn) depends on only three

independent parameters, M , p(T ), and p(S).

Indeed, when the values of M corresponding to the three
models for Fig. 1 are listed in Table 1, we find that they are
basically identical, explaining why Beck and Chang’s three
models give the same p(Cn) curve. Going further, one can
show that their curves shown in Fig. 1 precisely follow our
functions for p(Cn) and p(Ln), Eqs. 7 and 8.

So, in fact, the identifiability problem, as pointed out by
Beck[3, 4] is due to an exact mathematical degeneracy of

the BKT model without measurement: as far as p(Cn) is
concerned, the parameter space is three dimensional, not
four dimensional. Indeed, as also pointed out by van de
Sande [9], it is not just these three models but an infinite
number of models whose p(G) value and p(L1 value give
M = (0.95−p(G))(1−p(L1)) = 0.418 will give the identical
result for p(Cn) as model 1.

2.3 The BKT model with measurement
More commonly, though, measurements are involved. Stu-
dents submit activity results, and their scores on activities
are examined and their progress is checked. The student
score may be boolean (true or false) or continuous (0 to 1).
The latter kind can be considered a generalization of of the
first kind, and so we will assume that student score s satisfies

0 ≤ s ≤ 1, student score. (12)

In fact, the actual data that we analyze in this paper are of
this kind.

Performance curves

Learning curves

model 1

model 2

model 3

model 1
model 2
model 3

Figure 1: An example that demonstrates the iden-
tifiability problem[3, 4] of the BKT model without
measurement: three identical student “performance
curves” (upper panel) are generated from three en-
tirely different “learning curves” (lower panel). The
panels were taken as digital images from Beck and
Chang[4]. We have re-labeled the y axes, in ac-
cordance with our symbol definition, and renamed
the three models that they used simply as, simply,
models 1, 2, and 3. The practice opportunity corre-
sponds to our activity index n.



Now, based on Eqs. 2 and 3, the posterior probability given
the evidence of score s is given by

p(Ln|s) = s · p(Ln|Cn) + (1− s) · p(Ln|In)

=

[

s · (1− p(S))

p(Cn)
+

(1− s)p(S)

1− p(Cn)

]

p(Ln).(13)

This equation, along with Eqs. 1 and 4, then completely
specify the BKT inference iteration, using which the stu-
dent’s actual performance can be fitted with theory and the
student knowledge can be traced.

Our model here has the advantage of being general as it en-
compasses other models of interest in the following sense.
If we replace s with the theoretical value p(Cn), then we
get p(Ln|s = p(Cn)) = p(Ln), leading to identical results
of the BKT model without measurement. If we restrict the
s variable to be boolean 0 or 1, then p(Ln|s) becomes ei-
ther p(Ln|Cn) or p(Ln|In), and so our model reduces to the
“boolean”BKT model, more common in the literature [2, 6].

Of course, Eq. 13 for the general case of s makes the recur-
sion relation used in the previous section, Eq. 5, no longer
valid. Accordingly, all results of the previous section no
longer apply. This immediately leads to the following ques-
tion.

Is the identifiability problem absent in the BKT model with
measurement, then?

Since all BKT models used in practice are ones with mea-
surements, this question is a very important one. As we
will show in this paper, with real data, the answer is no, in
general. The identifiability problem does persist even in the
BKT model with measurement, unless some other feature of
the data places a strong constraint on p(L1) or p(G).

From a theoretical point of view, also, it seems a bit too op-
timistic to conclude [9] that the identifiability problem does
not exist in the BKT model with measurement just because
the model now involves all four parameters in predicting the
student performance. The reason why all four parameters
are involved is the probabilistic nature of the measurement
process, or the probabilistic nature of a student score. Then,
it is to be expected that when a few student scores are ex-
amined and fit with theory, at least some of the underlying
identifiability problem shows up, since the fit strives to de-
scribe the average behavior of the data.

3. THE BKT MODEL IN PRACTICE
Motivated by the ideas put forth in the previous section, here
we put the BKT model to practice, using a simple Monte
Carlo BKT model. As we shall see, this model provides
answers to the important “identifiability problem question”
posed near the end of the previous section, and gives other
useful insights as well.

3.1 Practical meanings of BKT fit parameters
The fitting of data with a complex model (non-linear models
with many parameters) is a non-trivial task [10] with many
potential pitfalls. As a rule of thumb, if each fit parameter
used cannot be identified with the practical description of a
salient feature of the data, fit results may well turn out to be

unreliable as there is a high chance that some fit parameters
are redundant or mis-used.

Therefore, it seems important to discuss the practical mean-
ings of the BKT parameters at the outset. To do so, let us
take note of the fact that the following equation is valid for
the BKT model with or without measurement (see Eq. 4 or
7):

p(C1) = 1− p(S)−M. (14)

This describes the initial value of the performance curve. In
practice, there may be noises in the data, and p(C1) must
be assessed with such noise filtered out.

Now, let us assume that the following positive eventual
outcome scenario is realized.

p(Ln→∞) → 1, (15)

p(Cn→∞) → 1− p(S). (16)

The second equation follows from the first for the BKT
model with or without measurement (see Eq. 4 or 7). It
should be noted that here n → ∞ really means n ≫ nT ,
and so the actual n value for which these positive asymp-
totic behaviors show up can be quite small: sometimes n = 4
or n = 3 may be large enough, as we will show in our actual
data analysis.

Assuming that the positive eventual outcome scenario is re-
alized, the following is a summary of the meaning of BKT
parameters from the practical point of view.

1. p(S) is the difference between 1 and the average stu-
dent score in the end.

2. T gives the scale parameter nT (Eq. 9), which describes
how many activities it takes for p(Cn) (and p(Ln)) to
expnentially approach the final behavior.

3. M is the difference between 1 − p(S) and the average
student score in the beginning.

More importantly, perhaps, the M parameter can be used
in a more general context to give the following information.

1. If the value of M is large and positive, say 1/3 ≤ M ≤
1, then it means that the learning is progressing as
evidenced by measured student activities.

2. If M is close to zero, say −1/3 < M < 1/3, then the

learning is stalling as evidenced by measured student
activities. This includes the case when the student
learns quickly and there is nothing more to learn.

3. If M is large and negative, say −1 ≤ M ≤ −1/3, then
the learning is regressing as evidenced by measured
student activities.

As we will see, this conjecture2 regarding the meaning of M
gains support from our data. Indeed, it is a main claim of
2This is a conjecture only in the BKT model with mea-
surement. In the BKT model with no measurement, it is a
readily provable statement.



this paper that the value of M can be used in this fashion
to “monitor student activities with one number.”

In other words, M can be regarded as a sort of student
activity monitoring parameter or a student activity
quality measure. It must be kept in mind that even in
cases 2 (stalling) and 3 (regressing) with imperfect perfor-
mance scores, it is possible that student latent knowledge is
in fact increasing. If so, then the knowledge is apparently
not firm enough to be clearly evidenced through measure-
ments.

Before we discuss our actual data analysis, here are some
points to keep in mind if we consider that the identifiability
problem, as discussed near the end of the previous section,
may persist in the actual data analysis.

1. Generally, the BKT analysis is not able to determine
values of p(L1) and p(G) precisely. In such a case, M
is a better quantity to discuss.

2. There may be exceptions where certain features of the
data place more stringent constraints on parameters.
An example is when the initial value of p(Cn) is very
small. In this case, both p(L1) and p(G) are necessarily
very small and can be determined with high precision
(by Eqs. 14 and 6).

3. The indeterminate values of p(L1) and p(G), and bet-
ter determined value of M , would mean a negative cor-
relation between p(L1) and p(G) according to Eq. 6.

3.2 Ramp game data
Here, we briefly discuss the set-up for the “ramp game mod-
ule,”whose activity logs were the source of the student score
data analyzed here. The ramp game module is discussed in
more detail elsewhere [7].

In the ramp task, students were asked to determine a height
so that the car could land on a particular location. The ramp
task consisted of five challenges requiring students to apply
more and more sophisticated knowledge about the ramp sys-
tem as follows.

Challenge 1: relationship between height and a fixed land-
ing location.

Challenge 2: relationship between height and moving land-
ing locations.

Challenge 3: relationship between height and moving land-
ing locations when a friction value is changed from the
previous challenge.

Challenge 4: relationship between height and moving land-
ing locations when mass of the car is changed.

Challenge 5: relationship between friction and moving land-
ing locations when starting height and mass are fixed.

It is important to note that each challenge level was aimed at
teaching and testing a single concept as listed above, making
the ramp game module very suitable for the BKT analysis.

Each challenge level was comprised of multiple steps: 3 steps
for Challenges 1 and 4; 4 steps for Challenges 2 and 3; 6
steps for Challenge 5. Students’ performances were scored
automatically on a 0 to 100 scale based on how close the
car landed from the specified landing location. If students
scored 75 points or higher, then they were allowed to move
to the next step within the level. If students finished all
required steps within the level, they moved to the first step
of the next Challenge.

For our analysis, students’ scores were normalized to a 0 to
1 scale, in accordance with Eq. 12.

Finally, note that in ramp game activities, a small group of
students worked as a unit. So, when we say “a student” in
this paper in reference to ramp game data, what we mean
is in fact a group of students.

3.3 Monte Carlo BKT
Given the theoretical ideas discussed so far, how might one
extract fit parameter values from the data? Here, we pro-
pose a simple Monte Carlo method. The idea is well-motivated.
Allowing for a possibility that there are multiple or infinite
minima of fit residuals (χ2; or, multiple maxima of the likeli-
hood function, more generally), we must approach the fitting
of even a single data set with distributions of fit parameter
values in mind. For instance, if indeed there is a massive
degeneracy for values of p(L1) and p(G), then there will be
infinite combinations of these values at which χ2 is a local
minimum.

Our Monte Carlo BKT algorithm is the following.

1. A random set of fit parameters, p(G), p(L1), p(S), and
p(T ) are chosen and the standard Levenberg-Marquardt
non-linear least squares fit algorithm [8] is applied us-
ing those values as the initial values for finding a local
minimum of χ2.

2. Successfully converged fit results are collected. At least
a certain minimum number of good fits, 200 for this
work, are required, to ensure statistics.

3. If the average value of each and every parameter value
converge within tolerance, 5e-4 for this work, then the
program is stopped and the success is declared.

After the program stops successfully, the average fit pa-
rameter values can be taken as representing the given data
set. Those average parameter values are the ones used in
Ref. [7]3.

In comparison with past work, it seems that our work can
be regarded as a generalized version of the brute force grid
search mechanism used in Ref. [1], where the minimum χ2

was identified by a grid search. However, it is important to
note that in our work, we do not place any restriction on
parameter values: any of the four parameters listed above

3For that work, however, tolerance 1.e-3 was used; the dif-
ferent tolerance does not affect the discussion of parameter
values in that work in any substantial way.
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Figure 2: Monte-Carlo samples of BKT parameters, p(G), p(L1), p(S), p(T ), and M . M is a derived parameter,
defined by Eq. 6. Each data set is labeled as “d<l> b<m> c<n>” which stands for “day <l> batch <m>

challenge/level <n>” in the notation of Ref. [7]. For each data set, we show the histograms for Monte Carlo
samples of fit parameters. Some histograms were scaled up by the shown factors, for clarity. On the right
most column, data (connected black symbols) are shown with the fit (thick solid red lines) and the knowledge
estimate (gray dashed lines), calculated using the averaged fit parameter values. The data are plotted as a
function of time after session login by student. The sample sizes (Ntotal) that were required for convergence
and other basic statistics are given in Table 2 in numerical forms. Some interesting statistics are visualized
and analyzed further in Fig. 3.



is given an initial value randomly chosen between 0 and 1.
This makes our analysis completely unbiased.

The results of the Monte Carlo BKT fit are shown in Fig. 2
and Table 2.

Fig. 2 shows various behaviors of the data captured by the
analysis. For instance, we would characterize the data set
1 as “an unfamiliar but easy activity set.” Apparently, the
student does not “know it” before the first try, but immedi-
ately gets it after the first try, which means that T → 1 and
nT → 0+. So, it takes no time for the student to learn, and
the analysis results are very clean—there are no ambiguities
for any parameter values. The next data set in terms of the
sure analysis is data set 6. While data set 6 is clearly noisier
than data set 1, what is common between the two data sets
is that the initial value of p(Cn) is practically zero, which
places a strong constraint that p(G) and p(L1) are small.
All parameter distributions are very sharp. For data sets 1
and 6, the value of M is at or near its maximum value, 1.

The next data set of interest is data set 3. This data set
shows a gradual improvement of performance, like data sets
1 and 6, but the main difference is that p(Cn) starts at
around 0.5. For this data set, all parameters have non-
trivial distributions, while all distributions remain rather
sharp. The value of M is moderate (0.4), but it is still in
the “progress” domain (see Section 3.1), consistent with the
positive trend shown in the overall performance pattern.

The next data set to discuss is data set 4, providing a very
clear demonstration of the “identifiability problem” in real
data. Here, parameters p(S), p(T ) and M are determined
with no ambiguity. However, parameters p(L1) and p(S)
are very broadly distributed. In comparison to data set 1,
the only difference for this data set is that the first point of
p(Cn) is at a large value. This causes a great uncertainty in
estimating values of p(G) and p(L1), since there is no way
of telling whether the first point is due to guessing or high
initial knowledge. The value of M in this case is close to 0.
So, the student is stalling, but in a high knowledge state.

All other data sets have negative values ofM on average, and
accordingly we might suspect that these are the data sets
for which the activities did not go very smoothly (student is
regressing). For these data sets, the data might be indicative
of confusion. It is however remarkable that even for these
“confused” data sets, the values of p(S) are sharply defined.

Table 2 summarizes simple statistics for the fit parameters,
including the total number of good fitsNtotal required for the
convergence of the Monte Carlo iteration. Not surprisingly,
data with practically no noise (data sets 1 and 4) converge
very quickly, while others require many more iterations4.

In view of our discussion in Section 3.1, the correlation be-
tween p(G) and p(L1) is interesting to look at and it is
listed in the last column. This correlation is almost always
negative, supporting our idea that for a single value of M
there is a significant degeneracy for the values of p(G) and
p(L1). The classic example among our data sets is data set

4The number of iterations required here can be reduced
greatly, if the goal is to obtain the average value only.

Data Set

Figure 3: The basic statistics of fit parameters in
Table 2 are summarized in the left column. Short
vertical bars at data points represent the standard
deviations. The standard deviation for random vari-
able x is denoted as σx (x = p(G), p(L1), p(S), p(T ),
and M) in the right column. Various standard devi-
ation values or other parameters of interest (M and
p(S) + p(G)) are plotted as a function of σp(L1) and
the correlation coefficient (r) for the data plotted in
each plot is also reported.

4, which shows the largest negative correlation, -0.79, when
M is sharp with no ambiguity. For other data sets also,
negative correlations are found except for one data set. An
exception is found for data set 6, which is characterized by a
very large positive correlation, as well as very small values of
p(G) and p(L1). As explained at the end of Section 3.1, the
degeneracy associated with M will disappear in the limit of
vanishing p(C1), which necessarily leads to the vanishing of
both p(G) and p(L1), and so the exception found for data
set 6 does not raise any issue.

4. DISCUSSION
It seems that a few good insights are gained already on topics
of high interest from our analysis.

4.1 There is an identifiability problem



Data Ntotal p(G) p(L1) p(S) p(T ) M Corr(G,L1)
1 200 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) -0.61
2 1211 0.69 (0.27) 0.37 (0.35) 0.38 (0.03) 0.68 (0.24) -0.09 (0.18) -0.49
3 1564 0.44 (0.13) 0.13 (0.21) 0.10 (0.10) 0.57 (0.25) 0.40 (0.15) -0.20
4 247 0.78 (0.15) 0.67 (0.19) 0.00 (0.00) 1.00 (0.00) 0.05 (0.00) -0.79
5 1217 0.84 (0.24) 0.24 (0.34) 0.39 (0.09) 0.64 (0.21) -0.24 (0.19) -0.77
6 1725 0.03 (0.11) 0.04 (0.15) 0.20 (0.09) 0.59 (0.08) 0.76 (0.14) 0.89
7 1367 0.74 (0.28) 0.37 (0.36) 0.42 (0.07) 0.71 (0.26) -0.17 (0.20) -0.66

Table 2: Basic statistics for Monte Carlo BKT fit parameters summarized in Fig. 2. Average values are
presented with standard devisions (in parentheses).

Data set 4 provides a clear proof for this statement. How-
ever, it must be noted that for some data sets there is no
identifiability problem. Data sets 1 and 6 are examples.

Generally speaking, as the data become noisier, fit param-
eter distributions become broad, giving rise to substantial
identifiability problem. However, p(S) remains very robust,
in comparison to other parameters. This is easy to notice
from the left column of Fig. 3.

4.2 The p(S) parameter estimate is robust
This is related to the fact that the positive eventual outcome
scenario (Eqs. 15, 16) tends to be realized when the BKT
analysis is applied. To see this point, note that for all plots
shown in the right most column of Fig. 3, p(Ln) has reached
1 at the end.

We can trace the reason back to Eq. 8, which shows that
it is the nature of the BKT model that, if enough attempts
are made, the latent knowledge eventually approaches 1. So,
p(S) becomes the only parameter that fits the behavior at
large n, which is the reason why it can be so robustly esti-
mated.

Since the latent knowledge approaches 1 at the end in all
cases shown of Figure 2, should we say that all students
acquired perfect knowledge? Clearly, this is not the case
[7]. It seems that a practical choice is to take 1 − p(S) as
the demonstrable level of expertise on the subject. In other
words, 1 − p(S) might be taken as the practical or demon-

strable knowledge, as opposed to the latent knowledge.

4.3 The empirical degeneracy can be detected
The concept of the empirical degeneracy [2] was discussed
briefly in the introduction. In the literature, certain proce-
dures such as limiting the values of p(S) and p(G) to small
values have been employed to avoid this problem.

Our analysis shows that such a procedure is unnecessary,
as the empirical degeneracy is detected from our analysis
itself. In other words, the empirical degeneracy need not
be avoided in the analysis by hand, since it is automatically
detected.

The theoretical analysis of the fixed point behavior of the
BKT inference iteration [9] shows that the empirical degen-
eracy condition corresponds to p(S) + p(G) > 1. According
to this condition, the fits to our data sets 2, 5, and 7 show
the empirical degeneracy.

What are the common features of our fits for these data sets?
The answer is that the BKT fit shows that the knowledge is
increasing while the performance is decreasing (and leveling
off)! Indeed, one might call this a questionable result. It
seems that these two opposing trends can be used as the
definition of the “empirical degeneracy,” similar in spirit to
other definitions in the literature [2, 9].

If we take our new definition that the empirical degeneracy
refers to the increasing knowledge with decreasing perfor-
mance, then it must mean that p(S) is large (to explain the
low performance at end), p(G) is large (to explain the ini-
tial high performance), and M is negative (since the overall
student performance is decreasing). Then, one might guess
that M or p(S)+p(G) are highly correlated. Indeed, we find
that the correlation between their values computable from
Table 2 is -0.99, not surprising at all given the definition of
M (Eq. 6).

A bit more interesting finding is that the empirical degen-
eracy and the identifiability problem are very highly cor-
related. In the right column of Fig. 3, we plot the width
estimates of p(L1) distributions (σp(L1)) with various quan-
tities of interest. (1) The fact that σp(G) has an extreme
high correlation (0.99) with σp(L1) corroborates our find-
ing that this is due to the identifiability problem. (2) The
fact that p(S) has the weakest correlation with σp(L1) cor-
roborates our finding that p(S) is a robust quantity, deter-
mined more or less independently of all other quantities.
(3) Lastly, it shows that the M parameter has a correla-
tion close to -1 with σp(L1) and the empirical degeneracy
parameter p(S)+p(G) has a perfect correlation with σp(L1).

4.4 The nature of data
As the analysis in this work is performed for continuous data
sets (Eq. 12), while many researches deal with boolean data
sets [1, 6], a question arises. How might our findings be
applied to boolean data cases?

It seems a safe assumption that boolean data are more sus-
ceptible to noises than continuous data sets, and so it is
presumably the case that such data sets are more difficult
to analyze and more prone to identifiability and empirical
degeneracy problems. However, other than the inherently
greater noise, it is not clear whether there are any funda-
mental barriers to applying the current analysis framework
to boolean data.

5. CONCLUSIONS



In this paper, we presented data from student on-line learn-
ing activities and their analysis using a Monte Carlo BKT
model. We also analyzed the BKT model mathematically.

Our work shows that it is possible to approach the BKT
model without any initial constraint or bias. We do not have
to try and avoid the identifiability problem or the empirical
degeneracy problem, since they are detected by the analysis.

Using our analysis, we can distinguish robust parameters
from indeterminate parameters of the model. We can also
detect problems in student activities, through the parameter
M . The numerical procedure takes about 20 seconds of wall
clock time per data set on a typical portable computer and
so it is amenable to real time implementation in educational
settings.

It is also an important finding of ours that the slip parameter
p(S) is the most robustly estimated parameter in the BKT
model, and it is an important parameter to use for assessing
the outcome of the lesson.
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