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FACILITATING AND ASSESSING GENETICS LEARNING WITH
BIOLOGICA™

BioLogica™ activities mediate students’ interactions with a multilevel
model of transmission genetics and foster their development of mental
models of inheritance, while collecting log files of students’ actions and
answers as they work. This paper presents findings at the classroom level
and at the level of student performance on selected assessment tasks. We
analyzed log file data to document the nature and extent of BioLogica use
in demographically diverse classrooms across the country. Our analysis is
based on log file data collected in 10 schools encompassing 58 classrooms
with the most complete datasets. Learning gains (as determined by pre and
post tests) varied across different class levels (honors, college prep,
regular, AP) and different implementation types.  Paired t-tests revealed a
significant difference between the pre- and post-test scores for students at
each of the four class levels.  College Prep students earned the greatest
gains (mean=8.27).  In 38 of the 58 classrooms, post test means were
significantly higher than pretest means (p<.05; 1-tailed).  However, in 5
classrooms post test means were significantly lower. Over all 58 classes,
the number of activities used by a class accounted for 8.7% of the variance
in gains.  An ANOVA reveals that classes with gains used significantly
more activities on average (6.04) than classes with losses (4.67; F = 4.67,
p < .05).  In addition, we examined the log files of individual students and
characterized student performance on selected tasks relevant to specific
models of inheritance, reasoning and inquiry skills. We compared
performance on four tasks with related items in the pre and post tests as
well as overall gains, determining that one task was a significant predictor
of learning gains. We discuss the implications of these analyses for
informing more nuanced and timely assessments of student learning and
inquiry skills.
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 This paper presents BioLogica™ data illustrating the affordances of Pedagogica
for facilitating research into the development of models of inheritance among high school
students and students’ ability to reason with those models to solve familiar and novel
problems.  BioLogica is one of the three content areas of the Modeling Across the
Curriculum project.

Project Background

The Modeling Across the Curriculum project is a scalability project for which we
have developed a technology platform, a reporting system, and curricular materials.
There are four levels of research being conducted. Level 1 is focused on improving the
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scaffolding design through individual interviews of students and teachers. Level 2 is
focused on classroom-based studies to evaluate the impact of amount of scaffolding.
Level 3 is a longitudinal study of our dependent variables (content, inquiry skills,
attitudes towards science, and epistemology of models) with the same students across 3
years in all three domains in our Partner Schools. Level 4 addresses what supports are
necessary to scale this to many more schools.

Our curricular activities present students with content using a progressive model-
building approach (White & Frederiksen, 1990; Raghavan & Glaser, 1995; Gobert &
Clement, 1999) in which simpler models (e.g., static representations of structural
information) provide conceptual leverage for more complex models (e.g., causal models)
of scientific phenomena, these, in turn, support model-based reasoning. We support
students’ model-based reasoning using scaffolds designed by our group (Gobert &
Buckley, 2003) and in accordance with model-based learning theory (Gobert & Buckley,
2000); in doing so, we also draw on literature on students’ difficulties in learning with
models (Lowe, 1993).

The inquiry skills in national standards (NSES, 1996; U.S. Dept of Education,
1993) match pedagogically with model-based teaching and learning, the theoretical
framework underlying our research, learning activities, and assessment (Gobert &
Buckley, 2000). The tenets of model-based learning are based on the presupposition that
understanding requires the construction of mental models, and that all subsequent
problem-solving or reasoning are done by means of manipulating or ‘running’ these
mental models (Johnson-Laird, 1983). Model-based reasoning also involves the testing,
and subsequent reinforcement, revision, or rejection of mental models (Buckley &
Boulter, 2000). This represents authentic science thinking in that it is analogous to
hypothesis development and testing among scientists (Clement, 1989). The reasoning
processes of hypothesis generation from the model, testing that hypothesis, and
interpreting the data are among the higher order inquiry skills that are difficult to teach
and are the type of reasoning needed in inquiry (Raghavan et al, 1995; Penner et al, 1997;
White et al, 2002; Gobert, 2000).

BioLogica™ Research
BioLogica is a hypermodel (Paul Horwitz & Burke, 2002; P. Horwitz & Christie,

1999; P.  Horwitz & Tinker, 2001) designed to help high school students understand and
be able to reason about transmission genetics.  It consists of a series of 12 model-based
learning activities based on the idea of progressive model-building (Raghavan & Glaser,
1995; White & Frederiksen, 1990) within a framework of model-based learning
(Buckley, 2000; J. D. Gobert & Buckley, 2000). It is available for download from
http://mac.concord.org. Scaffolding guides students as they interact with multilevel
models in a variety of tasks. Some of the tasks serve as embedded assessments; others as
performance assessments. Log files generated while the students work through the
activities provide a trail of student actions and inputs which we use to characterize and
assess students’ models and reasoning as well as problem-solving strategies and inquiry
skills.
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During the 2004-2005 school year, our activities were used in demographically
diverse schools across the US. We analyzed log file data from nearly 2000 students to
document the nature and extent of BioLogica use in each classroom, determining which
activities were used over what period of time and whether they were used in a block of
time or distributed over weeks. Our analysis is based on data collected in 58 classrooms
in 10 schools with the most complete datasets.  This information was triangulated with
information from surveys completed by teachers to characterize different implementation
types. Learning gains (as determined by comparing scores on identical pre and post tests,
33 multiple choice items) were compared across classes for different implementation
types and for different class levels (honors, college prep, regular, AP).

BioLogica log files also capture the chronological sequence of inquiry processes,
i.e., genetic crosses made, tool use (how they use the chromosome tool to examine
offspring genotypes) and what other information they seek.  To investigate the
development of students’ genetics understanding we examined the log files of individual
students and created metrics with which to characterize student performance on selected
tasks distributed throughout the 12 BioLogica activities. Protocols for analyzing this data
were developed through repeated cycles of validation and data reduction to ensure that
the concise reports and summaries captured students’ actions accurately. We coded tasks
for their relevance to the specific model of inheritance (simple dominance, incomplete
dominance, sex-linked, and polygenic), reasoning (cause-to-effect, effect-to-cause) and
inquiry skills (e.g., generating and interpreting data). We compared performance across
tasks in other activities related to the same model of inheritance as well as to items in the
pre and post tests.

Results
Students’ learning gains, as evidenced by pre- to post-score comparisons, varied

by class level.  On average, across member schools, the Honors students earned the
highest pre-test score (mean= 18.59), while the College Prep group earned the greatest
gain scores (mean=8.27). Regular students, the largest constituency (n=402), earned an
average pre-test score of 15.33 and average gain of 3.58. Paired t-tests revealed a
significant difference between the Biologica pre- and post-test scores for students at each
of the four class levels.



Proceedings of the NARST 2006 Annual Meeting  (San Francisco, CA,
United States)

National Association for Research in Science Teaching (NARST) April 4-
7, 2005

Table I: Mean raw scores, standard deviations, and percentage scores for Biologica pre-
and post-test by class level (total n items=33)

Class Level

Mean Raw Score
(Mean

Percentage)
Std.

Deviation
College Prep (n=44) Total Score Pre 10.82 (33%) 3.70

Total Score Post 19.09 (58%) 7.65
Gain (mean difference) 8.27(25%)* 9.41

Honors (n=262) Total Score Pre 18.59 (56%) 5.98
Total Score Post 23.24 (70%) 5.62
Gain (mean difference) 4.65 (14%)* 5.28

Regular (n=402) Total Score Pre 15.33 (47%) 5.22
Total Score Post 18.91 (57%) 6.51
Gain (mean difference) 3.58 (11%)* 5.47

Remedial (n=9) Total Score Pre 12.22 (37%) 1.64
Total Score Post 16.67 (51%) 3.24
Gain (mean difference) 4.44 (14%)* 2.74

*statistically significant at the p <.05 level

In 48 of the 58 classrooms where at least 50% of the students had taken both pre
and post tests, post test means were higher pre test means; 38 classrooms performed
significantly better (p<.05; 1-tailed).  However, in 10 of the 58 classrooms post test
means were lower than pre test means, with 5 classrooms scoring significantly lower
(p<.05; 1-tailed).  See Appendix A for the table of results. Lower performance on post
tests could arise from a number of causes:
� BioLogica activities may be too difficult and therefore frustrating for some

students.
� The teacher did not monitor students’ use and progress or include it as part of

their grade.
� We confused them.

Comparing classrooms with significant gains to classrooms with significant
losses, an ANOVA reveals that classes with gains used significantly more activities on
average (6.04) than classes with losses (4.67; F=4.67, p <.05). Over all 58 classes, the
number of activities used by a class accounted for just 8.7% of the variance in gains.

One possible reason for the relatively low variance in gains may relate to the ways
in which teachers used BioLogica activities.  From their classroom communiqués, we
know that some teachers used BioLogica to introduce concepts, to review concepts or
interwoven throughout their genetics curriculum.  We cannot make large-scale
comparisons across uses due to sparse data from teachers’ classroom communiqués.  
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However, in one large school, two teachers undertook an experiment in which one
teacher (Teacher W) integrated BioLogica throughout the genetics unit while the other
(Teacher S) taught genetics as he was accustomed to doing and used BioLogica at the end
of the year as a review.  Both taught Honors classes.  We hypothesized that the classes
who used BioLogica as review would have higher pretest scores and lower gains than the
classes who used BioLogica in an integrated manner.  Statistical analysis supported these
hypotheses.   As shown in Table II, the students who used it as a review had a
significantly higher mean score on the pre test than the students who took the pretest
before genetics instruction.

Table II.  Pretest Means by teacher
teachervar N Mean Std. Deviation Std. Error Mean
Teacher W 60 17.47 4.073 .526Total_Scorepre
Teacher S 107 23.20 4.435 .429

t=8.2444, p<.001

From Table III, we see that the students who used BioLogica for review posted
significant gains over their pretest scores, but had significantly lower gains than the
students who used BioLogica integrated within the genetics unit.

Table III.  Gains by teacher

teachervar N Mean Std. Deviation Std. Error Mean
Teacher W 60 6.2833 5.44337 .70274gain
Teacher S 107 3.0561 4.58840 .44358

t=4.074, p < .001

BioLogica log file analyses
When we analyzed students’ actions when undertaking selected tasks posed in

BioLogica activities, we learned that we are able to categorize students’ performances
and instantiate the process in computer programs that do so for the large number of
students in our study.  This section illustrates using data drawn from students’ use of the
Monohybrid activity.

After students have worked with the models of meiosis and fertilization, the
causal models at the cellular level of our multilevel model of transmission genetics, we
introduce them to the models of inheritance through work with models at the pedigree
level.  Using pedigree models they can manipulate the genotypes of organisms at the
allele level, breed organisms and observe the traits of their offspring.  Monohybrid is the
foundational instructional activity at this level. Monohybrid poses four tasks intended to
help students integrate their models of meiosis and fertilization (developed in the first
three activities) into a model of inheritance. The four tasks use a progressive modeling
approach to foster students’ abilities to use the representations and their models to reason
about models of inheritance. The first two tasks in the series guide students’
investigations of the distribution of traits among offspring. Tasks 3 and 4 differ in that
they provide little scaffolding and ask students to manipulate the model of the dragon
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genome to set up particular situations. In Task 3 we ask students if it is possible for a pair
of dragons to have only 2-legged offspring and then challenge them to make it happen.
Task 4 asks students to again manipulate the model of the dragon genome such that a trait
appears to skip a generation. Although the first step in Task 4 is procedurally the same as
Task 3, it uses a different model of inheritance (i.e., simple dominance vs. the
incomplete-dominance model for Legs) so this constitutes transfer.

We use Task 3 here to describe the type of data collected and how we analyze
students’ inquiry skills. Students use the Chromosome tool to inspect and alter the
genome of the parents. They then cross the parents using the Cross tool and observe the
40 offspring randomly generated by the meiosis and fertilization model. We determine
whether students are successful by checking that the parents have the necessary
genotypes to produce only 2-legged offspring. Student performance is scored by
computer, based on whether they made the correct prediction, whether they were
successful, how many attempts they made, and whether they repeated any crosses (an
indication of haphazard, as opposed to systematic) behavior.  Repeated crosses do not
provide new data with which to reason and increase the complexity of the visual display
of data. There are six categories ranging from A (correct on first try) to F (failed with
only one attempt). In between are categories that distinguish successful and systematic
(B), successful but haphazard (C), unsuccessful but systematic (D) and unsuccessful and
haphazard (E).

Students’ actions and answers are captured in xml files that are uploaded to our
server. The xml log files have been validated at each stage of processing and data
reduction. First, we created concise chronological reports of students’ actions. We then
created algorithms that produced summary records consisting of one record per log file.
We then created and validated algorithms for producing one record per student. It is used
in the statistical analyses that follow. For Task 3, the statistical records include fields that
identify school, class, teacher, and student ID numbers, cumulative time spent on Task 3,
students’ final selections for the prediction and whether correct, whether they were
successful, number of attempts, and the Task 3 category (A-F) described above. Similar
data extractions were performed for the other three tasks, based on the affordances of the
data collected.

Overall Performance on Tasks
Table IV includes summary statistics across the four tasks. As the tasks became

more difficult, students spent longer on the tasks. As expected, fewer students succeeded
at Task 4 than Task 3.
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Table IV. Summary statistics for cross task comparison

Task

Average
time on

task
(minutes)

N
students
who did

task

correct
prediction

(%students)

Punnett
square on
first try

(%students)

Punnett
square
select

(%students)

Punnett
square
predict

(%students)

task
success

(%students)

task
success  on

first try
(%students)

1 1.6 639 76%
2 2.7 647 45% 72% 68% 72%
3 4.0 581 59% 90% 40%
4 5.8 528 49% 20%

In Task 3 we asked students if a pair of dragons could have only 2-legged
offspring and then challenged them to make it happen. Looking at the data more closely,
59% of the students predicted that it could be done. 90% of the students were able to
accomplish the task, with 40% able to do so on the first attempt. 5% of the students who
predicted it could be done did not succeed in doing so.

Correlation of monohybrid performance with post test scores and gain
In order to identify tasks that best predict learning gains, we ran a series of

analyses using a dataset of 649 students in ten member schools. The majority of the
students (54.2%) were enrolled in ‘regular’ classes. The correlations listed below are
significant at p<.001, 1-tailed.
� All four tasks are correlated. (R Squareds ranging from .493 to .845)
�  Pre and post test scores are significantly and strongly correlated. (R Squared =

.572)
� Monohybrid subscores pre and post are significantly and strongly correlated. (R

Squared = .535)
� Total Gains are negatively correlated with Pre test scores. (R Squared = -.326)
�  Monohybrid Gains are negatively correlated with Mono Post test subscore. (R

Squared = -.465). We interpret the negative correlations as indicative of a ceiling
effect.

� Performance on all 4 tasks correlates with pre and post test scores and gains, both
overall and for monohybrid items, with the exception of Tasks 1 and 4 which are
not significantly correlated with Monohybrid Gain. (R Squareds ranging from
.075 to .450)

We then ran a series of regressions to determine how well performance on the
Monohybrid tasks predicts outcomes and gains when pre test scores are used as a
covariate. Mono Post and Mono Gain refer to those items on the post test specifically
targeting monohybrid concepts. Table V summarizes the results. In each case, t-statistics
of the regression coefficients for covariate (pretest) and independent variables (tasks)
reveal that only the pretest and Task 3 are significant predictors of outcomes (1-tailed
significance <.05).
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Table V. Summary of Adjusted R Squareds for outcome variables

Post test Total gain Mono Post Mono Gain
Pre test .325 .137 .281 .239
Plus Tasks 1-4 .399 .231 .346 .300
Change due to Tasks 1-4 .072 .094 .065 .061

It is interesting that the tasks make a greater contribution to the variance of post
test scores and total gain than to the monohybrid post test score and gain. This suggests
that students’ performance on these tasks; Task 3 in particular, may be indicative of
knowledge and skill components beyond those measured by the monohybrid items of the
pre and post tests. We might infer that students who can reason from effect to cause, as
required by Task 3, are better able to reason through the questions posed on the test.

We then examined the systematicity of these students’ performance on Task 3.
We eliminated A (successful on first try) and F (unsuccessful, only one try) categories
since both involve just one trial. We compared the post test performance (See Table VI.)
of the four remaining groups (n=192) with an ANCOVA using the pre-test as covariate.
The ANCOVA indicates that the Pre-test covariate is significant, as is the four-category
predictor variable (CS, CH, IS, IH) (F=7.383, p < .001). Together, the covariate and this
variable account for 28.3% of the variance in the Post-test scores. Multiple comparisons
using Tukey HSD shows that there are significant differences between the “CS” and
“CH” groups as well as the “CS” and “IH” groups. The “CS” group has significantly
higher post-test scores (co-varying on pre-test) than did either of the two other groups.
The mean difference is significant at the .05 level.

Table VI. Post test mean scores (out of 33)

T3CATSYS4NUM Mean Std. Error 95% Confidence Interval
Lower Bound Upper Bound

correct systematic (CS) 23.117 .643 21.847 24.388
correct haphazard (CH) 20.426 .788 18.870 21.981
incorrect systematic (IS) 15.306 3.146 9.093 21.518
incorrect haphazard (IH) 17.946 1.362 15.258 20.635

When we group and compare the systematic and haphazard students regardless of
their success on Task 3, an ANCOVA indicates that the Pre-test covariate is significant,
as is the two-category predictor variable (S, H) (F=12.578, p < .001). Together, the
covariate and this variable account for 25.2% of the variance in the Post-test scores. The
post test means of systematic and haphazard students are shown in Table VII.

Table VII. Post test mean scores of systematic and haphazard students.

T3CATSYS2NUM Mean Std. Error 95% Confidence Interval
Lower Bound Upper Bound

Haphazard 19.980 .740 18.518 21.442
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Systematic 22.868 .651 21.582 24.154

We have shown that students’ performances on Task 3 are a predictor of their
later performances on the post test. It is not surprising that students who are successful on
Task 3 and students who are systematic are also more likely to do well on the post test.

Discussion and conclusions
The very obvious limitation of this study is the assumption that the behavior captured in a
log file results from the cognition of one student, when in fact it could result from
informal collaboration with the student at the next computer.  This would need to be
addressed if the tasks were to be used for high-stake assessments.

We have demonstrated that students do learn genetics with BioLogica and that we can
analyze their problem-solving and inquiry behaviors through the use of log files.  Some
students are able to solve problems quickly using presumably precompiled models of
inheritance.  Others succeed at tasks within their zone of proximal development by
reasoning with not-yet-compiled models of inheritance, some proceeding systematically,
some haphazardly.  Still others do not succeed, often working haphazardly or giving up
very quickly.  It is not surprising that those who reason systematically, regardless of
whether they succeed at a particular task, are more successful on the post test, since it is
indicative of content knowledge models and the ability to reason with them.  It will be
interesting to see if this finding recurs as we examine student performance on other tasks
in BioLogica.  If it does, tasks like those analyzed in Monohybrid offer potential as
replacements for or supplements to fact-based tests and performance assessments.  Even
more importantly, they offer opportunities for timely formative assessments that students
and teachers can use to monitor learning.
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APPENDIX A.
Pre-Post Test Gains by School and Class (total n items=33)

School
Class
ID N

Minimu
m Gain

Maximu
m Gain

Mean
Gain

Std.
Deviation

AMS 5174 16 -1.00 22.00 7.63* 6.21
5175 20 -8.00 14.00 4.50* 5.39
5176 18 -2.00 16.00 6.89* 5.19
5177 4 1.00 11.00 6.00 4.08
5178 2 8.00 9.00 8.50* 0.71
5352 24 -8.00 15.00 4.17* 5.27
5353 21 -3.00 8.00 1.95* 3.23
5354 3 -1.00 7.00 2.33 4.16
5355 25 -6.00 13.00 2.64* 5.15
5356 5 -1.00 11.00 4.80 4.92
5357 26 -4.00 11.00 3.38* 4.29
5358 3 -4.00 6.00 0.33 5.13

FHS1 3724 3 1.00 23.00 11.33 11.06
4135 10 -1.00 6.00 1.30 2.06
4136 7 -9.00 18.00 6.57 8.32
5499 14 -2.00 21.00 11.71* 6.59
5500 13 .00 28.00 14.31* 8.17
5903 21 -8.00 15.00 5.38* 5.45

FHS2 5904 24 -2.00 9.00 3.38* 3.20
6627 9 1.00 9.00 4.44* 2.74
3505 2 -3.00 2.00 -0.50 3.54

FPS 3506 2 -2.00 9.00 3.50 7.78
3507 3 -8.00 13.00 2.33 10.50
3511 6 1.00 18.00 10.50* 6.66
3918 19 -6.00 12.00 4.26* 4.90
4120 19 -5.00 7.00 1.00 3.71
4799 10 -1.00 20.00 9.70* 6.36

LHS1 4800 11 1.00 17.00 6.09* 4.41
4405 6 -5.00 12.00 4.00* 6.99
4406 8 -17.00 5.00 -3.00 6.59
4407 3 -3.00 9.00 4.67 6.66

LHS2 3263 9 -10.00 6.00 -1.00 5.32
3264 19 -6.00 10.00 2.16* 3.67
3265 16 -1.00 9.00 3.88* 3.34

*statistically significant at the p <.05 level continued on next page.
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Table XV (cont.): Pre-Post Test Gains by School and Class (total n items=33)

School
Class
ID N

Minimu
m Gain

Maximu
m Gain

Mean
Gain

Std.
Deviation

NHHS 3266 15 .00 11.00 4.40* 3.11
3270 16 -8.00 7.00 0.75 4.02
3271 22 -3.00 14.00 4.18* 3.79
3272 20 -5.00 9.00 2.80* 3.83
3273 21 -4.00 14.00 3.71* 5.53
3813 4 -3.00 5.00 0.00 3.46
3814 7 -9.00 6.00 -4.00 5.63
3815 5 -8.00 .00 -4.00* 3.08

PHS 3816 7 -11.00 3.00 -2.86 4.78
3817 8 -12.00 -2.00 -7.00* 3.46
3822 3 3.00 4.00 3.33* 0.58
5597 15 -6.00 13.00 5.40* 5.95
5598 18 -6.00 13.00 5.83* 4.64
5599 16 -3.00 14.00 7.00* 5.09

SHS 5600 17 -1.00 12.00 4.88* 4.00
5601 11 -2.00 14.00 4.64* 5.05
5602 22 2.00 14.00 6.77* 3.88
4154 3 2.00 16.00 9.33 7.02
4155 17 -1.00 17.00 6.41* 5.08
4156 11 -6.00 9.00 3.00* 4.31

WCE 4377 16 -5.00 11.00 3.81* 4.31
4378 15 -5.00 20.00 5.60* 5.51
4383 14 1.00 17.00 8.71* 5.24
4938 10 -5.00 4.00 0.30 2.71

*statistically significant at the p <.05 level


