Ten Things You Need To Know

Advice for Creating Quality Online Professional Development

by Cynthia McIntyre and Bonnie Elbaum

with contributions from Concord Consortium staff

Ten Things You Need To Know

W hile the goals are different for each professional development NetCourse that we teach, the pedagogy and methodology are similar. Four years ago, when we first began offering a NetCourse on how to bring inquiry into science and math classrooms, the effectiveness of online professional development was largely untested and unproven. The medium was in its infancy. Our course was one of the first large-scale efforts to deliver online professional development to teachers, and its successes and failures raised awareness in the education community about using the Internet for delivery of professional development.

Since then we have gone on to develop other NetCourses in online course development and moderation of online discussions.

We have come to recognize, through our experience, some key ingredients to successful online professional development. Through feedback from evaluators, teachers and our own observations, we have also recognized some things we did wrong.

by Cynthia McIntyre and Bonnie Elbaum

with contributions from Concord Consortium staff

Ten Things You Need To Know

Advice for Creating Quality Online Professional Development

1. Say “I do”

Commitment is important. If someone else (e.g., a principal or technology coordinator) signs up teachers for an online course, completion rates plummet. Teachers have to have a strong personal motivation to participate—for example, the content is clear and compelling or they are receiving graduate credit or they have paid tuition. In our first online professional development course, INTEC, many teachers thought they were signing up for a “technology” course, not a course on the pedagogy of inquiry, because they were signed up by their technology coordinators. The ensuing confusion and disappointment was reflected in the low overall completion rate. On the other hand, those participants who paid for graduate credit, 71% completed the practicum. Of the 51% who were receiving continuing education credits, the completion rate was 74%.

But overall, we found that providing course credits has a greater motivational appeal if associated with a degree or certificate program. Professional development points or CE units have motivational value but are not as effective as programs that are more generous in their points or require less effort. In the case of our Virtual High School™ two-semester online professional development course, the completion incentive is clearer: the course is a prerequisite for teachers wanting to participate in VHS™. If a teacher failed to complete the course, the school’s VHS participation might be put into jeopardy. Having a clear motivation for signing up is important. Teachers sign up (or are signed up) for many different reasons, and in districts that provide the right incentives, the completion rates are higher.

On the other hand, don’t ask for too much. If the NetCourse is long (INTEC was 26 weeks) the commitment can be overwhelming. Shorter courses (no more than 12 or 15 weeks) create higher completion rates and more flexibility for teachers. They can finish the course before other priorities take over.

(continued on page 5)
Every revolutionary technology starts with a whimper. Its full revolutionary impact is realized only later after fundamental structural changes are made to accommodate the new technology. The first ice-making machines were used to make ice for ice-boxes. Once or twice a week the ice company delivered a block of ice to your home and you put it in your ice box. It was decades before the ice companies vanished and everyone had their own personal ice machine, called a refrigerator.

Steam was initially viewed as a solution to a problem for sailboats, not as a replacement for them. Steam engines were first installed on sailboats because of the persistent problem of time wasted in the doldrums. Only when there was not enough wind would the steam engine be fired up. In the end, of course, sail power vanished and steam permitted faster, larger, safer, all-metal ships that could move goods much more economically.

In spite of the decades that computers have been in schools, we have yet to see the revolution they could cause in learning.

In the history of technology there are countless examples of when a new technology was first used to address a narrow problem within the existing order. Only later did it overthrow the old order.

The delay is inevitable because structural changes are needed for the new technology. In the case of ice machines, universal access to electricity and lower costs through mass production were needed before everyone could buy a refrigerator. In the case of steamboats, deeper harbors, new construction techniques, and railroads to supply coal and move cargo were needed before large steamers made sense.

There is a dawning realization that the current economic boom has technology to thank for the structural changes it has caused in business. Productivity is up, businesses are far less hierarchical, and financial markets have been democratized. But the technologies we see today will look feeble and clumsy tomorrow because the technological revolution is far from complete. We are only part way through fundamental improvements in the technologies that enable computers and networks. One indicator of this ongoing change is "Moore's Law," an observation made in 1965 by Gordon Moore, several years before helping to start Intel. Moore observed then that the number of transistors on a microchip was doubling every eighteen months. Remarkably, this incredible rate of advance has remained true for thirty years, and could for another thirty. This kind of exponential change applies to the entire information industry, not just computer chips. Experts expect these changes to continue for ten to twenty more years, but no one really knows. The result might be a trillion-fold increase in performance since 1965 and a million-fold increase from today.

One would think that the enormous advantages technology has brought to business would be reflected in education. But in spite of the decades that computers have been in schools, we have yet to see the revolution they could cause in learning. Educators are still delivering block ice made by ice machines, still using steam only in the doldrums. This is because business competition rewards improvements while education is organized to conserve and pass on the best of the old. In addition, education is highly labor-intensive, and the cost of labor has been bid up by the buoyant economy. We are, nevertheless, overdue for a surge in educational performance driven by the technology—as soon as we are willing to make the necessary structural changes.

It is impossible to predict what new applications these improvements in the underlying technology will enable, but it is certain that the structural changes necessary to exploit them fully in education will take additional decades. Developers of educational technology are writing just the opening speech of the most dramatic play educators have ever witnessed. Our grandchildren will write the next intervening scenes, and their children will enjoy the finale.

Robert Tinker is president of The Concord Consortium.

bob@concord.org
Why Don’t Face-to-Face Teaching Strategies Work In the Virtual Classroom?

by Sarah Haavind

How to Avoid the “Question Mill”

It’s easy to say that leading a course online is different from leading a face-to-face class. It’s harder to explain exactly what’s different and how to make the shift in order to meet tried-and-true instructional goals. One can fail miserably applying the typical approach to the virtual classroom. As more experience with online teaching accumulates, effective, alternative strategies that meet the intended goals are emerging. Here are a couple of strategies applied to two classical instructional goals: getting a discussion going and summarizing an activity.

Getting a Discussion Going

How many times have you seen a course or workshop leader throw out a few pertinent questions to get a discussion going, perhaps as a follow-up to a brief presentation? If the first few queries are met with silence, most instructors reword the question or add another question to spur response. This is a time-worn face-to-face strategy because it can be quite effective. Someone eventually poses a response, then another hand goes up, and the discussion is off and rolling. Here and there as a point is made or dialogue wanes, the leader chimes in with a few more queries to pick up the pace once again. But what happens when the same leader tries this online? We call it the “Question Mill.”

With the intention of focusing discussion on the salient content, the online discussion leader jumps into the dialogue and poses three or four potential avenues of further exploration. The result? There are two. The first is silence. Reading the list of questions, the participant gets reader demand equal attention. What once faded in and out now becomes a cacophony of choices for the online participant, and the reader just turns off. What’s the alternative? For starters, the assignment must be purposefully vague. This increases the potential of eliciting a participant’s real thinking on a subject. As a few postings are made to the discussion, the instructor culs from the comments a theme or thread worthy of careful focus or deeper digging and holds it up for the group to consider. Such an intervention might include three or four short quotes or paraphrases from earlier comments followed by a bit of explanation or clarification and then a single question to elicit more focused dialogue.

Summary vs. Landscape

Summarizing is another strategy that can curtail rather than enhance dialogue. When it works, summarizing can lost after the second or third query and quickly clicks to the next posting. The second result is avoidance. Five or six responses appear, but they are unrelated to one another. The participant chooses a different query for comment. The dialogue remains unfocused and confusing for other readers. Both results quell rather than enhance the discussion.

When a discussion leader in front of a room lists four or five possible pathways of exploration, listeners tune in to what interests them and tune out the rest. But when listed on a page, all the questions confronting the from the comments a theme or thread worthy of careful focus or deeper digging and holds it up for the group to consider. Such an intervention might include three or four short quotes or paraphrases from earlier comments followed by a bit of explanation or clarification and then a single question to elicit more focused dialogue.

Summary vs. Landscape

Summarizing is another strategy that can curtail rather than enhance dialogue. When it works, summarizing can

Below is a recrafting of the last paragraph of the posting above. Can you feel the difference between the “summary” tone above and the “landscape” set below? Which one will foster further dialogue?

So what’s our bottom line?

Love it -> Tally = 5
Love it not -> Tally = 5

Hmmm.... Score tied.

What our group seems to have individually and collectively expressed is a healthy sense of ambivalence toward inquiry.

But... ambivalence is good!

If we were all “gung ho” after reading a few articles and trying some activities, I’d be a bit suspicious! Ambivalence, skepticism, and suspension of judgment is essential to a scientific approach, and it is always involved when we are facing a potential change in our thoughts and behaviors. This is an excellent start.

This rewritten paragraph emphasizes the variety of responses and encourages exploration of the reasons why participants hold various positions about inquiry teaching. The moderator compliments participants on not rushing to judgment and keeps dialogue open on the topic.

The Concord Consortium
Teaching Strategies
continued from page 3

clarify and give participants a sense of direction. It can also close doors and block paths to alternative approaches. Summaries abstract ideas and place them in a hierarchy of meaning that the moderator determines. Positions can appear to harden when the moderator tries to capture them in a summary. Often, the important nuances of reasoning disappear as the moderator highlights the contradictions or assumptions reflected in the comments.

If a moderator wants to help participants build meaning from their discussions, a more useful intervention would be to summarize by portraying a “landscape,” which may include multiple perspectives on the issues discussed. Maintaining a suspension of judgment is critical.

The sidebar example (see page 3) shows an example of both methods. The moderator juxtaposes participants’ comments, setting out a landscape for further reflection, but curtails dialogue with the summary at the end.

If you’re interested in developing effective moderation techniques, see the review of the new book, Facilitating Online Learning, at right.

Sarah Haavind is the Netcourse Design and Moderation Specialist at The Concord Consortium. sarah@concord.org

Facilitating Online Learning: Effective Strategies for Moderators
by George Collison, Bonnie Elbaum, Sarah Haavind, Bob Tinker
Atwood Publishing
http://www.atwoodpublishing.com

Facilitating Online Learning: Effective Strategies for Moderators is a readable and valuable contribution to the relatively new but tremendously hot area of netcourses and e-learning, providing welcome explanations, strategies, and real examples of moderating that can meet the needs of classroom teachers, university faculty, and professional development staff.

Experience and novice online educators, looking either for new techniques to add to their inventory or for strategies to improve their overall teaching in online mode will find this book informative and useful.

Linda Harasim
Simon Fraser University
at Harbour Centre

Facilitating Online Learning is a successful example of removing the distance from “distance learning.” An effective moderator of online courses must have a repertoire of disciplined strategies for interaction with students. This book is a roadmap for traveling from “wallowing in the shallows” to “reasoned discourse” with copious examples that assist. It is not a philosophical examination of strategies but a real “how to” in an area sorely lacking any guidelines.

Many years ago I “taught” an online course to thirty students across the country. I learned how deeply personal people are when they speak with their fingers rather than their voices. How I could have used the advice contained in this volume. I certainly will distribute it to those who are designing courses as well as those moderators with whom I am working.

So much of online learning is scanning of text or streaming of lectures with didactic instruction from the moderator. Facilitating Online Learning is a fresh breeze in a stale and humid environment. Bravo and thank!

Linda Harasim
Simon Fraser University
at Harbour Centre

The inquiry-based approach of teaching and learning has been highly praised in the business and industries training, in teachers’ education, and last but not least, in school science, mathematics and technology teaching. This book describes the new profile of successful facilitators leading virtual learning communities into guided inquiry.

The Concord Consortium staff—the authors of the book—have had a practical and very successful experience in revolutionizing the classical teaching approaches through the use of information technologies in all these domains.

By reading Facilitating Online Learning, you are invited to share their exciting stories and their important practical conclusions.

Goery Delacote
Exploratorium Museum
Ten Things You Need To Know
continued from page 1

different learning styles, are
crucial.

We've found mixed results when adding a face-to-face component to an online professional development course. When we first started INTEC, many projects had reported that it was difficult to create effective online communities of teachers, particularly at the secondary level. So we hedged our bets and built in a face-to-face local study group. In retrospect we see that the site-based team sapped online discussion and adversely affected recruitment and motivation. We now know it's possible to build a strong online community without a face-to-face component. VHS teachers have reported this time and again. VHS has also had good results from including a limited face-to-face component to one of their professional development courses.

Create a community
A NetCourse experience is enriched when participants feel that they are part of a community of learners, who are in it together. By creating a community, participants are less likely to feel isolated in the online medium. Instead, they work within a support structure of individuals who are invested in the group's success. In addition to ice-breaking activities, designed to tap into the creativity and individuality of each participant, we provide a place online where participants are encouraged to “hang out,” share personal stories or professional news. With this space for human interactions, bonds are formed. Without it, there are one or two inevitable outcomes: the social and personal creeps into content-rich discussions, diluting their educational potency, or teachers fail to fully interact and the discussion area becomes a series of one-way postings where participants simply hand in work.

Pity the lowly modem
When we first started teaching online professional development courses, the technology environment in schools was quite different. The most common access to the Internet by our participants was AOL via a modem. In VHS, we found schools with a single telephone modem connected to a network accessed by multiple computers delivered even poorer performance. Keeping these limitations in mind, INTEC included text-based pages in its user interface design. These may be faster to load, but graphics are important for demonstrating a concept or illustrating a point. Even so, it's important to recognize that page-loading time is an issue. Designing for the smallest page size, creating graphics that are compressed, using animated GIFs instead of QuickTime or MOV files help speed up the tedium of waiting for a page to appear. Today, as urban schools get wired, more bandwidth is becoming available. Rural America, however, is still often limited to less than telephone modem speeds.

Quality is the gold standard
It's hard to think of a more important issue for all NetCourses than quality. With the huge growth in online course offerings, an educator might not be able to separate the wheat from the chaff of online professional development. Quality control standards are essential. The National Content and Curriculum Standards that we use for VHS were developed by a group of university-level distance learning experts, state department of education curriculum experts, and VHS teachers, trainers, and administrators. It lists criteria for high quality online courses. It's important to set standards and constantly have them reviewed by knowledgeable experts. In INTEC, we did not adequately educate our advisory boards about the criteria for a good course. And we should have solicited more input from potential participants about what they need. Adequate needs assessment is a companion to quality control. Make sure the course is a good match for what the participant needs. Find out if the potential participant has prior experience with online professional development. A great course is worthless if it addresses the wrong content.

Work anywhere, anytime
A successful professional development NetCourse must fit into participants' busy schedules. All our NetCourses are offered on a scheduled asynchronous basis—participants get online based on their own schedule, at daybreak with a cup of coffee or at 3 a.m. wearing their pajamas. Assignments have weekly due dates, and participants must post to the discussion area throughout each week, but within those guidelines there is freedom to work when it is most convenient. A scheduled asynchronous NetCourse allows teachers from around the world to work unhindered by geography, time zones, or local scheduling constraints.

Talk it out
All successful online professional development courses need a space for communication. The class discussions that take place in our NetCourses are at the core of learning. Threaded dialogues with comments, responses, and comments to responses are displayed in a chronological and logical order that's easy to follow. Unlike email listserve or synchronous chat, discussions are permanently recorded and available to all students in one central location. Because they're not time-bound and there is no need to “raise your hand” to speak, participants think about what they're going to say before saying it, which gives the course greater depth. Participants can reply to course content questions on readings, share feelings about the process and nature of their learning, and respond to their colleagues' inquiries.

The NetCourse instructor must establish posting requirements, otherwise participation is spotty; when participants find a discussion area continually devoid of discussion, there's little reason for them to come back. By establishing participation guidelines and encouraging participant-to-participant interaction, a NetCourse creates a community of learners who are invested in the course and in furthering not only their own learning but that of their classmates.

Too many online courses revert to the traditional “sage on the stage” model: publishing lectures and funneling knowledge in a one-way direction, from teacher to student. Learning is dependent on discussion between the participants about the content of the activities. The approach we developed is captured in the book Facilitating Online Learning, written by a group here at The Concord Consortium, and taught in our online professional development course Moving Out Of The Middle. The goal of this approach is to facilitate dialogue between students rather than through the moderator.

Dynamic and thoughtful interactions don't happen automatically. A facilitator is needed to guide participants from the side and help them engage in meaningful discussion, which makes the connection between the course content and their own teaching practices. Without some kind of imposed order, a discussion area becomes chaotic and overwhelming—a space
Beam Me Up, Scottie!

Handheld computers extend the range of wireless communication in schools

by Stephen Bannasch

Small handheld computers are becoming both more powerful and less expensive. Consider this: the cheapest handheld models, currently priced at $150 to $600, are similar in computing power to a 1988 vintage Mac. (Of course that Mac didn’t run for weeks on a couple of AAA batteries.) By combining much of the computing power of a desktop system with the portability of a graphing calculator, handhelds could become the first truly personal computer used by students both in and out of school.

Currently most systems are designed as personal and business organizers. The existing suite of applications needs to be adapted and new ones created in order to optimize these systems for student use. The best designs will also include low-power wireless networking to support ubiquitous communication and practical solutions for working with devices such as probes and cameras.

Currently I’m reviewing the communications and expansion capabilities of the PalmOS and Windows CE Pocket PCs, but within the next year I also expect a number of interesting handheld systems to appear based on GNU/Linux.

Symbol has created rugged systems with integrated bar code scanners and 802.11 2-Mbps wireless Ethernet communication. It comes with a high-capacity rechargeable lithium-ion battery.

The PalmOS family of handheld computers as well as the more expensive Pocket PC systems running Microsoft CE v3.0 include several methods for communicating with external devices, other computers and over a network. No common standard has been adopted, so each device uses a slightly different method for this kind of communication. The implications for schools include capability, flexibility and price. Let’s look at the choices.

All systems include a basic RS-232 serial port, and all but the most ancient Palm include wireless IR communication. Some of the handhelds can use USB to connect and synchronize data with a desktop computer; however, none of the systems allows connection of USB devices to the handheld. A few systems are capable of using a wireless Ethernet to communicate over a local area network. When selecting a system for use in a school, it is also important to remember that only the PalmOS family will work with Macintosh computers.

The simplest wireless networking is based on IR communications. All the CE Pocket PCs include this. Starting with the Palm III, it extended the PalmOS so that the PalmOS family will work with Macintosh computers.

The Palm VII series introduced CDPD wireless WAN capability. This supports wide-area wireless LAN communication in most metropolitan areas of the U.S., using a small portion of the analog cellular phone system allocated to digital packet data. Nominal bandwidth is 19,200 bps but practical speed is about 4800 bps. This is one-sixth the rate of a 28,800 bps modem. While this may seem quite slow, it compares well to the capability of an alphanumerical pager. In addition, services like AvantGo will cut out the extraneous content of web sites and make them available without all the graphics. Unfortunately for school use, the monthly service cost is fifty dollars for unlimited usage.

A similar wireless WAN capability is available for the Compaq iPaq Pocket PC by using a Sierra Wireless AirCard 300. This is a PC card CDPD modem and can be combined with a service from Aether Systems to provide portable email and Web access.

Palm has licensed the PalmOS and underlying hardware designs to a number of other manufacturers who have extended the platform in interesting ways. Handspring makes the PalmOS Visor system with the Springboard expansion interface slot. This is an expansion slot on the back of the system into which many different modules can be attached. The interface is electrically quite similar to that of a PC card slot on a laptop and as such is a much more powerful interface than a serial port. Springboard modules not only include hardware expansion but also have the programs for accessing the hardware built into the module. Handspring has extended the PalmOS so that when a Springboard module is inserted, the software associated with it is automatically run. Additionally, the Handspring includes a high-speed USB slave interface for communication. This replaces the serial port on the Palm and allows much faster communication with newer computers that have standard USB ports.

Xircom has announced that a series of networking products called SpringPorts will be available this fall for the Visor. These include two different wireless RF LAN technologies. One is the new high-speed 11 Mbps version of wireless...
After Dr. Robert Ballard discovered the RMS Titanic sitting on the bottom of the ocean, the explorer and oceanographer received thousands of letters from students wanting to join the next expedition. In response, he founded the JASON Project, a science, geography and environmental education program, supported by the JASON Foundation for Education. The project has been praised as a leader in distance learning for students and teachers alike.

In September 2001, the JASON Foundation will start a new venture, the JASON Academy, which will provide online professional development courses for teachers of science. The Concord Consortium is helping the JASON N Academy create probe-based activities for those courses, which will be for middle-grade science teachers. Online courses in earth systems, marine science, and energy will include activities related to the use of temperature, light, and voltage SmartProbes™.

For more information, contact Stephen Bannasch.

stephen@concord.org
The Future of Handheld Computers in Education

A conversation with Palm, Inc.

Through her research at The Concord Consortium, Carolyn Staudt has become excited about the educational uses of handheld computers. She spoke with Mike Lorion, Vice President for Education at Palm, Inc., about the potential uses of handhods in the classroom and some of the challenges ahead.

Carolyn Staudt
Mike, as you and I know, new handheld technologies are finding a place in education. I’ve been doing research on using handhelds in grade schools and middle schools for several years, and the results are exciting. Coupled with inexpensive networks, handheld computers are enabling students to carry their own personal tool of inquiry everywhere—class, school, home. Kids can use them in the classroom or take them out in the field! Since they’re equipped with a drawing program and a facility for taking notes, they’re able to link together the student’s own thoughts and questions. Handhelds provide an integrated system of inquiry.

Mike Lorion
I think the technology goals of the country, so to speak, map very well to what we’re doing. There are some pieces of research that say that students and faculty are taking to individual-type devices—whether that be single-use devices like cell phones, or graphing calculators. The content is in a form now where it can be easily accessible because it has been brought to this network base infrastructure. And the infrastructure to deliver it to the students is there based on what’s happening with the wiring of the classrooms and the e-rate.

Handhelds are being used by K-12 students to do scientific experiments inside the classroom and in the field.

Now, if we could finally get to the point where in classrooms students could show the same affection to learning as they do to games. Students have already gone to handhods for that stuff. Six million Game Boys sold in this country last year, six million. If we think our screen is small, we have a 3x advantage.

The trouble I saw in the ten years that I was doing technology schools at Apple was that you still have to get past the booting and you still have to get past the problems. Versus, I press the button, it comes on, I do things.

Carolyn Staudt
With PCs there are too many steps in order to get connected to their stored materials. Handhelds provide a personal tool that enables students to have an immediate reservoir for their experiences. With a simple push of a button and a tap of the screen, students record their thoughts or enter the results of a survey. Simple snap-on devices allow the students to record photographs, GPS locations, or even temperature and heat rates any-time, anywhere. With infrared or wireless capabilities, these tools can become their link between other student researchers and experts on the Web.

ML Right. The other part of it, though, is how do we make teachers feel comfortable enough with the technology so they truly use it all the time?

CS First, you have to change the role of the teacher in the classroom. When you empower students with their own personal collection, research, and collaboration tools, their educational experience expands beyond the teacher-centered classroom. The role of the teacher shifts to one that is more meaningful. Teachers become true mentors that help students learn through their own experiences and ask their own questions. You encourage them to think. Foremost in all of the curriculum standards that exist in our country the promotion of inquiry.

One way to support this new role for teachers is to provide them with handhelds. Give the teachers themselves the tool that will change the focus of their classroom. But there is something more important. That is introducing teachers to teaching strategies—ones that use handheld applications—that match their existing course objectives and curriculum. These strategies are alternatives to lectures. They allow teachers to encourage the collection and research of individual student artifacts that can be shared with classmates.

You can easily put a handheld in the hands of six or seven students for the price of one desktop computer. My dream is to put handhelds in the hands of all kids so they can connect to the Web any-time. I want to see collaboration with students from around the world. As a former teacher, I guarantee that the added value of personal exploration and exposure to more diverse environments will provide a more meaningful educational experience for teachers and students.

ML Guaranteed. Traditionally, the way the desktop applications have been used is a student really has to get on there and do something for twenty minutes. Now you’ve taken a third of the class time. We think, though, with our package of technology—just the mobility aspect alone—we think we can do a lot for learning around that.

CS I was at a presentation where someone complained that every student was required to get a TI calculator and now they’re going to have to buy a Palm. They saw it as an add-on, when it actually could replace that calculator. And it’s better because of the note taking capability and all the things that can happen with it.

ML You can do the same thing with a Palm as with a graphing calculator, but what I can’t do with a graphing calculator is get an image that’s really defined by the size of the screen. I can also do animations, so if I was doing a mathematical problem, I could check sine waves and frequency. I can actually do a simulation of this based on the animation tools that we’ve put in. Then you can take the data and instead of look-

ing at it in the form of a graph you can look at it as a table as well.

CS Often students have to collect data in a traditional laboratory or classroom. The teacher centers around the collection of the data and not the analysis of that data. By using the handheld computer, the students can do so much more. They can explain directly on the device what they see, display and manipulate the data in different ways, while still recording their thoughts and predictions. They can instantly perform another activity to prove their assumptions. This opens the door to true problem solving. Just imagine that these questions can now be asked wherever the students are.... in the grocery store, in the car, at a family reunion, wherever. The students are asking “What if?” questions and instantly acting on them.

Many teachers are afraid of allowing a handheld computer into a classroom test. I remember when the American Chemical Society made students memorize the periodic table on their year-end standardized tests. That no longer happens. What’s more important—understanding the trends that exist on a periodic table or memorizing the atomic numbers and weights? No, a handheld won’t be allowed into an AP test as of right now. But if you teach kids how to think about challenging questions, not just memorize answers, it doesn’t matter how much information you have stored on a handheld.

ML Let’s look inside a kid’s backpack. Kids carry around a year’s worth of curriculum in their backpack in the form of bound paper. They’ve got a number of different other tools that they use. It’s a huge communica-
Microsoft talks a lot about “anywhere, anytime” kind of networking. What the handheld brings is the anyone.

Now here, I think, is the big idea. Let’s assume that first of all we’ve got this server. And on this server we have to make sure there’s every student and their “locker.” Outside of files being stored and those kinds of things for each one of the students, what’s the other most important information that they have? It’s what they have to do. Every student has a calendar that deals with multiple courses, multiple teachers, and multiple activities. I want a way that

So what are we doing in the future? Obviously, better color, expandability. We will have little postage stamp cards you’ll be able to plug in, because for some functions like the encyclopedia and dictionary, you want to have it all there and you want it to be very quick. I don’t want to get it from the Web.

CS How do you respond to the equity issue? What are you going to do about kids whose parents can’t afford the devices?

ML Rather than us discounting every one of our products by ten percent, I’d rather grant the schools extra units with their purchase in order to meet the needs of the students who can’t afford them.

ML In one of our projects, parents who want to buy a Palm can buy it outright. If they want to rent it, the rent is low. But if that’s impossible, the child can use an institutional Palm from a classroom set. They’re not going to restrict any child from having one.

ML If you look at some of the studies we’ve done around the usage of handhelds overall, and we’ve been doing this for a while, one of the things that’s pretty apparent is that people tend to use handhelds somewhere between ten to fifteen times a day but for about three minutes per usage.

CS Because they’re using them as organizers.

ML But I think based on that kind of usage pattern it’s much easier to adapt to the existing curriculum. You don’t have to figure out how to get students to sit down for twenty minutes in order to incorporate it into the curriculum.

ML With data logging and the note taking and drawing, kids do twenty minutes plus. It’s hard to get them in and out in a 45-minute period. In fact, you want them to continue even outside of class, in their world.

CS But it’s focused on a lot of the existing curriculum, right?

CS Right.

ML In partnership with Scholastic we gave five kids Palms Vlls with keyboards and sent them to the Republican and Democratic conventions as reporters. They could upload their stories to Scholastic for publication on the Web.

CS See, that’s what I call collaboration. The mobility and the beamability are by far the most powerful reason why I want to put them in kids’ hands.

ML Of course you’re not going to sit down and write your whole report on the Palm, but it complements all the other multimedia tools.

CS Concerning writing on the Palm, second graders in one of my research classes felt a lot better working on the Palm. I was having them just use the memo pad, but they were all using the on-screen keyboard without the stylus. They were using their two thumbs, like a Game Boy. According to the teacher, the writing capability in that class improved from the year before.

ML What do you think with lower-grade kids is the number one problem as far as using Palms in the classroom?

CS Durability. When you take those kids out to the playground and they accidentally drop one, they’re devastated. For younger kids it’s got to be durable.

ML The number one thing we get complaints about is the size of the screen.

CS I was told it was not the under-size screen but the keyboard—kids’ motor abilities would not allow them to use it.

But then I went to a second grade classroom and the kids had absolutely no problems with the size of the screen. Now, whether it’s color or not does make a difference to them.

I’m going to jump back, because I remembered another problem with the handhelds in classrooms is batteries. Anything you put in the hands of students has to be rechargeable because teachers or parents cannot keep up with the batteries. And it becomes an equity problem again because it’s expensive.

CS We’re moving to all rechargeable.

CS That’s great. But to wrap up, let’s just say that the most important challenge to using handhelds in the classroom is to develop meaningful strategies. Teachers, students and parents need to be reassured that the software that goes onto the handheld makes kids think and helps them learn.

For more information about the use of handheld computers and probes in education, visit our web site probesight.concord.org or contact Carolyn Staut at The Concord Consortium. carolyn@concord.org
Telecommunications Project for Math Education Funded

Online video case studies provide interactive professional development

The U.S. Department of Education has announced the funding of an innovative telecommunications project that uses the Internet to deliver online professional development in the use of standards-based mathematics approaches to grades four and five math teachers.

The greatest challenge generated by the new mathematics standards is that effective implementation requires teachers to make fundamental changes in teaching practice, acquire a deeper understanding of content, and become familiar with technology. It is likely that much of the current backlash against the standards is fueled by examples of poor implementation by unprepared teachers. If the nation is to benefit from the increased student mathematics learning promised by the new standards, and for the standards to function as intended, an intensive teacher professional development effort is urgently needed.

In response to this need, The Concord Consortium is leading and coordinating the Seeing Math Telecommunications Project on behalf of a consortium of private and public partners who have extensive experience in telecommunications and mathematics education. Partners include COMAP, a mathematics education group in Lexington, Mass., and TeachScape in New York, who provides online teacher professional development.

The project will develop six highly interactive online digital video case studies, which will be made available free to teachers. Video case studies, when properly supported, are far more effective in improving teaching techniques than abstract discussions or readings on how to teach. A video shows an entire environment and explains how to respond to typical student issues. Online video case studies can be made highly interactive by linking them to lesson plans, student work, relevant standards and assessments, background content, expert commentary, teacher reflection, and moderated online discussion groups.

Busy teachers need ways of upgrading their teaching strategies that are available anytime, anywhere. Because the Internet is increasingly able to handle video on demand, online case studies and courses provide a cost-effective way of providing alternatives.

For more information about the Seeing Math Telecommunications Project, contact Alvaro Galvis, alvaro@concord.org

Things You Need To Know continued from page 5

where few have the energy or motivation to participate.

8 Learn it together

A new creativity often generated from NetCourse participants collaborating in team activities that emphasize making decisions, defining team members’ roles, and creating a final product together. Sample group activities include participants working in pairs to review each other’s work, small group discussions, solving a mystery based on instructor clues, writing a report together, or creating a web page or PowerPoint presentation as a team. Like the mix of offline and online activities, a successful online course must include both independent work and teamwork. While independent study alone is a viable option for education in certain circumstances, a course is a course precisely because of the collaboration between learners involved.

9 Tell me how I’m doing

Assessment in our professional development courses is based on participation and completion of assignments. Because participants can feel estranged in an online course, providing timely evaluations of work is critical. Weekly or bi-weekly evaluations are essential. Private discussion threads provide further opportunities for discussing evaluations. Peer feedback and self-assessment are both hallmarks of a good NetCourse. Each type of software used to deliver a course online has its own unique system for evaluation and assessment. Make sure the one you choose provides the assessment needs you require.

Software that allows all work to be collected and stored in a centralized, searchable database is handy because it allows the instructor and participant to access a permanent record of work in one location. The instructor can easily sort and search to find problem areas, samples of best work, and powerful evidence of how a student’s thinking has changed and progressed over time.

10 Build it to scale

One of our objectives has been to deliver professional development courses at a rate less than that of a traditional face-to-face program. A key to doing this is scalability—growing without creating everything from scratch each time. One of the ways we have done this is by using moderators for the online discussion. The pyramid structure we’ve used, with expert moderators providing support to groups of cohort moderators, works and is less expensive than using course experts to moderate. Moderators are not experts in the field, but facilitators trained in course moderation. Our experience with online professional development courses, such as Moving Out of the Middle, proves moderators can be trained to support an online course.

Using trained moderators allows us to build a support structure without adding to operational costs. Theoretically, it would seem possible to amortize course costs over time by continuing to offer the same course repeatedly, but realistically, any online professional development course worth its salt is evaluating feedback and making changes on a regular basis, so developing creative ways to scale while at the same time keeping costs down is important.

What’s Next?

Here at The Concord Consortium we’re working with the Jason Foundation for Education to create probe-based activities for professional development courses for middle grade science teachers. At the Curry School at the University of Virginia and Peabody College at Vanderbilt University, we are providing faculty development seminars. Our newest project, the Seeing Math Telecommunications Project, will deliver teacher professional development using video case studies. Only four years ago these kinds of online courses were virtually unheard of. Today they’re an essential part of professional development education.

Cynthia McIntyre and Bonnie Elbaum are co-facilitators for the NetCourse Instructional Methodologies course. cynthiag@concord.org
bonnie@concord.org
WWW resources in this issue

Why Don’t Fact-to-Face Teaching Strategies Work in the Virtual Classroom? How to Avoid the “Question Mill” by Sarah Haavind
Books by Concord Consortium www.concord.org/books
Facilitating Online Learning, published by Atwood www.atwoodpublishing.com
Moving Out of the Middle cservices.concord.org/moom

Facilitating Online Learning: Effective Strategies for Moderation
Atwood Publishing www.atwoodpublishing.com
Books by Concord Consortium www.concord.org/books/fol
Moving Out of the Middle cservices.concord.org/moom

The Future of Handhelds in Education: A Conversation with Palm, Inc.
Palm, Inc www.palm.com
 ProbeSight: Handhelds and Sensors probesight.concord.org

Telecommunication Project for Science Education Funded
COMAP www.comap.com
TeachScape www.teachscape.com/about.html

Beam Me Up, Scottie! Handheld Computers Extend the Range of Wireless Communication in Schools by Stephen Bannasch
Bluetooth www.bluetooth.com
Casio www.casio.com
Clarinet IrDA Ethernet bridge www.clarinettoys.com/Product_Overview.html
Compaq www.compaq.com
Hewlett Packard www.hp.com
Palm Hardware Development www.palmos.com/dev/tech/palmhardware/
PalmOS Hardware Comparison Matrix www.palmos.com/dev/tech/hardware/compare.html
Palm Hardware Page—Unofficial www.massena.com/darrin/pilot/lsas/hardware.htm
Pocket PC Home Page www.microsoft.com/mobile/pocketpc/default.asp
ProbeSight: Handhelds and Sensors probesight.concord.org
Sierra Wireless www.sierrawireless.com
Symbol Technologies www.symbol.com
Xircom www.xircom.com
“In the thirty-plus years I’ve taught school this has been the most motivating class I have experienced.”

NIM participant

Netcourse Instructional Methodologies

January 2001

Netcourse Instructional Methodologies (NIM) is a course designed to prepare face-to-face classroom teachers to become online course instructors in the Virtual High School®. An outgrowth of the internationally recognized Teachers Learning Conference (TLC), NIM introduces the pedagogy, methodology, and technology that each participant needs to teach an existing VHS® NetCourse section effectively.

For additional application, registration, and tuition information, call 978-369-7574, or go to our web site:

http://vhs.concord.org/join

“Inquiry in the classroom and the student-centered, open-questioning environment it entails can prove challenging for teachers. To teach using inquiry, teachers need first to experience for themselves what inquiry actually means and then carefully build their capacity to teach with inquiry-based curriculum.”

Distributed by

The NETWORK Inc. • 136 Fenno Drive • Rowley MA • 01969-1004 USA
800-877-5400 • fax 978-948-7836

The Concord Consortium
37 Thoreau Street
Concord, MA 01742
PHONE 978.369.4367
FAX 978.371.0696

InquiryWorks! Real Teachers, Real Stories

Frontline stories and explorations about the challenge and excitement of bringing inquiry teaching to classrooms across the country.

Published by The Concord Consortium
www.concord.org
$15.00