# High School

## All High School Resources

**African Lions: Modeling Populations**

Explore exponential and logistic growth models to analyze population data for African lions and identify carrying capacity.**Atomic Structure**

Explore ion formation, isotopes, and electron orbital placement using interactive models of atomic structure.**Atoms and Conservation of Energy**

How does the Law of Conservation of Energy (the First Law of Thermodynamics) apply to atoms?**Baggie Chemistry**

Household chemicals mixed in a baggie produce dramatic results.**Boiling Point**

This model allows you to explore why polar and non-polar substances have very different boiling points.**Build and Test a Model Solar House**

Construct and test the energy efficiency and solar heat gain of a cardboard model house.**Catalysts**

Explore the effects of homogeneous catalysts.**Cellular Respiration**

Explore how your body converts the chemical energy of glucose into the chemical energy of ATP.**Ceramic Forces**

Explore what happens when a force is exerted on a ceramic material.**Charged and Neutral Atoms**

Explore the role of charge in interatomic interactions.**Chemical Bonds**

Explore the different kinds of chemical bonds that can form, ranging from non-polar covalent to ionic.**Chemical Reactions and Stoichiometry**

Control the concentrations of molecules and temperatures of reactions to explore reaction rate dynamically, and change the ratios of chemicals and observe the effects to learn how to balance chemical equations.**Comparing Dipole-Dipole to London Dispersion**

Investigate the difference in the attractive force between polar and non-polar molecules.**Comparing Motion to Trajectory with the Qualitative Grapher**

Gain insight into the difficulties students face in learning to interpret graphs**Conflicting Selection Pressures**

Observe how heredity and natural selection allow a population to adapt to a changing environment by making favorable mutations more common and unfavorable mutations less common.**Diffusion Across a Semipermeable Membrane**

Explore the role of pore size in the diffusion of a substance across a membrane.**Diffusion and Molecular Mass**

Explore the role of a molecule's mass with respect to its diffusion rate.**Diffusion and Temperature**

Explore the role of temperature in the rate of diffusion of a substance.**Diffusion of a Drop**

Explore the random molecular motion of a dye in water.**Diffusion, Osmosis and Active Transport**

Explore how water and ions can diffuse both passively and actively through cell membranes.**DNA to Protein**

Explore what DNA is and how proteins are synthesized from the genetic information stored in it.**DNA to Protein**

Explore how the code embedded in DNA is translated into a protein. Transcription of DNA and translation of mRNA are modeled.**Electric Current**

Explore the relationships between voltage, current, and resistance that make up Ohm's Law using molecular models of circuits.**Electrons in Atoms and Molecules**

The interactions of electrons with matter are central to many technologies from transistors, diodes, and smoke detectors to sophisticated imaging, lasers, and quantum computing.**Electrostatics**

Discover how atoms can be charged, and manipulate charge and distance to examine Coulomb's Law.**Excited States and Photons**

Investigate how atoms can be excited to give off radiation.**Factors Affecting London Dispersion Attractions**

Explore the role of size and shape in the strength of London dispersion attractions.**Gas Laws**

Explore the interrelationships of pressure, temperature, and volume with atomic models of Boyle's Law, Charles's Law, Gay-Lussac's Law, and Avogadro's Law.**Geniverse**

Students investigate dragon phenotypes and genotypes, run breeding experiments and solve genetic problems in a virtual lab.**Geniverse Demo**

Students investigate dragon phenotypes and genotypes, run breeding experiments and solve genetic problems in this demo version of the Geniverse virtual lab.**Graphing Quadratic Equations**

Students learn to graph a quadratic equation using the coordinates of the vertex of a parabola and its x-intercepts.**Greenhouse Gases**

Use a computer model to explore how the earth's atmosphere affects the energy balance between incoming and outgoing radiation.**How Electrons Move**

Discover the forces affecting the movement of electrons, including electric and magnetic fields.**Hydrogen Bonds: A Special Type of Attraction**

Explore the polar molecule interactions known as hydrogen bonds.**Intermolecular Attractions**

Explore how London dispersion attraction and dipole-dipole interactions explain the different boiling points of materials and apply that reasoning to DNA, antibodies, and gecko feet.**Intermolecular Attractions and States of Matter**

Explore how states of matter are related to the strength of intermolecular attractions.**Introduction to Quantum Mechanics**

Discover the quantum nature of electrons including their wave nature, tunneling abilities, and their bound and excited states.**Is There Life in Space?**

Explore the question: Can there be life outside of Earth?**Linear Equations: Points, Intercepts, and Slopes, Oh My!**

Students learn to graph lines using the x- and y-intercepts of equations, as well as how to graph a line when given an equation in point-slope form.**Linear Equations: Ski Slope**

Learn about the numeric representation of the slope of a line, including using rise and run to graph lines with a given slope.**Making and Breaking Bonds**

Explore the association and dissociation of diatomic molecules.**Making Heat**

Does change in concentration change the amount of heat released in a chemical reaction?**Metal Forces**

Explore what happens when a force is exerted on a metallic material.**Modeling Earth's Climate**

Examine climate data and models to explore what we might be able to predict about the Earth's future, and how sure we will be about it.**Modeling Transcription**

Explore how an mRNA copy is made of DNA.**Modeling Translation**

Explore how a protein is made from an mRNA sequence.**Modern Genetics**

Students breed dragons to learn concepts in modern genetics.**Molecular Geometry**

Use models of electron arrangement around atoms to discover how molecules form linear, trigonal planar, and trigonal pyramidal shapes.**Molecular Self-Assembly**

Explore how molecules assemble themselves into defined patterns, a process called molecular self-assembly, using a unique set of computational models.**Molecular View of a Gas**

Explore the structure of a gas at the molecular level.**Molecular View of a Liquid**

Explore the structure of a liquid at the molecular level.**Molecular View of a Solid**

Explore the structure of a solid at the molecular level.**Mutations**

Explore how changing the DNA sequence can change the amino acid sequence of a protein.**Oil and Water**

Explore the interactions that cause water and oil to separate from a mixture.**Pendulum**

Explore the factors that affect a pendulum's motion.**Pendulum and Spring**

Explore the motion of a pendulum suspended by a spring.**Phase Change**

Explore what happens at a molecular level as substances change phase.**Phase Change**

Explore what happens at the molecular level during a phase change.**Plastic Forces**

Explore what happens when a force is exerted on a polymeric plastic material.**Polarity and Attractive Strength**

Explore the role of polarity in the strength of intermolecular attractions.**Population Explosion**

Study how populations stay in balance with their environment and respond to various factors such as food supply and predators**Probability Clouds**

Investigate the probability map of electron orbitals.**Protein Folding**

Explore how hydrophobic and hydrophilic interactions cause proteins to fold into specific shapes.**Protein Partnering and Function**

Build "partnerships" between a protein and small molecules, explore the effects of surface charge, polarity and shape on partnering, and learn the importance of a "good fit" between molecules.**Quadratic Functions in Vertex Form**

Students learn to identify the vertex of a parabola from the vertex form of a quadratic function equation, and then graph the parabola.**Quadratic Word Problems Part 1**

Students solve two problems involving the motion of projectile objects, modeling the motion using quadratic equations.**Quadratic Word Problems Part 2**

Students solve two problems each involving the motion of projectile objects, modeling the motion using quadratic equations.**Quantum Tunneling**

Explore the unique concept of quantum tunneling and its importance to modern technology.**Scanning Tunneling Microscopy**

Use a virtual scanning tunneling microscope to explore the quantum tunneling effect.**Seeing Intermolecular Attractions**

Explore different types of attractions between molecules.**Semiconductors**

Explore the structure and behavior of natural and doped semiconductors.**Solubility**

Explore molecular views of solvents and solutes to explain how substances dissolve, the differing solubilities of particular solutes in polar and nonpolar solvents, and the effects of temperature on dissolution rates and saturation.**Solving Linear Equations with the Function Analyzer**

Reveal the connection between symbolic and graphic representations of equation solving**Spectroscopy**

Explore why excited atoms emit different wavelengths of radiation and learn how to identify atoms based on their unique atomic spectra.**Spring and Mass**

Explore the factors that affect a spring's motion.**States of Matter**

How do the forces and attractions differ between the states of matter?**Sunlight, Infrared, CO2 and the Ground**

Explore how solar radiation interacts with Earth’s surface and atmosphere.**The Temperature-Pressure Relationship**

Explore the relationship between the temperature of a gas and the pressure it exerts on its container.**The Temperature-Volume Relationship**

Explore the relationship between the temperature of a gas and its volume.**The Volume-Pressure Relationship**

Investigate the relationship between the volume of a gas and the pressure it exerts on its container.**Tire Forces**

Explore what happens when a force is exerted on a rubber tire.**Transistors: The Field Effect**

The field effect transistor is the most common type of transistor.**Tree of Life**

Zoom down from what we can see with our own eyes to the macromolecules from which they are made**Weaving a Parabola Web with the Quadratic Transformer**

Explore how the graph of a quadratic function and its symbolic expression relate to each other**What is Meiosis?**

Explore meiosis and fertilization in dragons in a special lab that gives students the power to recombine alleles.**What is Pressure?**

Explore pressure at the atomic level.**Will There Be Enough Fresh Water?**

Explore the question: Will there be enough fresh water for the growing human population?**y=mx+b**

Learn to graph a line using its slope and y-intercept, or to identify the slope and y-intercept from a linear equation written in slope-intercept form.