Lesson Title: Fence Painting

Subject: Algebra—slope	Topic: Rate of Work
Grade: 8 and 9	Designer: Eli Shaheen

Stage 1 - Desired Results

Lesson Overview

In this lesson, students will investigate work problems and the effect of a worker's rate on job completion. **Standards Addressed**

• Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Common Core Math 8.F.1.)

Date:

- Compare properties of two functions each represented in a different way—algebraically, graphically, numerically in tables, or by verbal descriptions. (Common Core Math 8.F.2)
- Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. (Common Core Math 8.F.4)
- Describe qualitatively the functional relationship between two quantities by analyzing a graph Sketch a graph that exhibits the qualitative features of a function that has been described verbally. (Common Core Math 8.F.5 and F-IF.4)

Enduring Understanding: The slope of a line is equivalent to the rate of work/change. A linear function graph is a conventional way to represent rate of work.	Essential Question(s): How is slope of a linear function related to rate of change?
 Students will need to know: Key terms: distance, time, coordinate, point, origin, axes, slope, rate of change, steepness. Units of measure for distance, time and rate of change. 	 Students will be able to: Describe the graph of the rate of work. Determine the slope of a straight line. Determine the rate of work from its relationship to slope. Determine which graph represents the faster rate of work.

Stage 2 - Assessment EvidencePerformance TasksOther Evidence:In this activity, students:• Fence Painting• Plot points, calculate slope, determine rate of change and
qualitatively judge faster and slower rates.• Fence Painting
Check-In• (other assessments
TBD by teacher)

 Lesson Procedure Many days before: Discuss work problems in Algebra Discuss meaning of slope Day of: Set up groups, computers Introduce lesson (method tbd by teacher). Have students complete <i>Fence Painting</i>. Conclude lesson (method tbd by teacher). 	 Required Materials: Samples of work problems Computers Supported Internet browser with access to SmartGraphs portal Projection device (LCD, SmartBoard, or large monitor) preferred but not required Calculators
Possible Discussion Questions for Students:	Sample Answers to Discussion Questions
When more people are added to a work crew, what happens to the time it takes to complete the job?	The time decreases—the job is completed faster.
What does the slope of a line tell us?	The rate of change of one variable in relation to another.
Why is time represented on the x (horizontal) axis and position represented on the y (vertical) axis?	Time is the independent variable, which is usually represented on the x-axis; position is the dependent variable, usually represented on the x-axis.
What units of measure can you use to measure:a. Time?b. Work done?	 a. Time units: seconds, minutes, hours, days b. Amount of job done such as length of fence painted
How is a period of inactivity represented on a straight line graph?	By a flat section somewhere in the graph.
How is stopping represented on a position- time graph?	When you stop, your position does not change with time. A horizontal line results.
How is slow, steady motion away from the sensor represented on a position-time graph?	Slow, steady progress results in a gently sloped straight line tilted up to the right in Quadrant I.
How is fast, steady motion away from the sensor represented on a position-time graph?	Fast, steady progress results in a steep straight line tilted up to the right in Quadrant I.
How can you tell how much time elapsed as you moved from one position to another?	Look at the time data associated with each position. Find the difference of the two times.
How can you tell how far you moved within a certain time interval?	Look at the position data associated with each time. Find the difference of the two positions.
What does the steepness of a straight position- time graph tell you about the motion?	The steepness tells you how fast the object moved. Lines with steeper slopes indicate faster motion

Template adapted from Wiggins and McTighe (2004) Understanding by Design