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ABSTRACT

The Bayesian Knowledge Tracing (BKT) model is a popu-
lar model used for tracking student progress in learning sys-
tems such as an intelligent tutoring system. However, the
model is not free of problems. Well-recognized problems in-
clude the identifiability problem and the empirical degener-
acy problem. Unfortunately, these problems are still poorly
understood and how they should be dealt with in practice is
unclear. Here, we analyze the mathematical structure of the
BKT model, identify a source of the difficulty, and construct
a simple Monte Carlo BKT model to analyze the problem in
real data. Using the student activity data obtained from the
ramp task module at the Concord Consortium, we find that
the Monte Carlo BKT analysis is capable of detecting the
identifiability problem and the empirical degeneracy prob-
lem, and, more generally, gives an excellent summary of the
student learning data. In particular, the student activity
monitoring parameter M emerges as the central parameter.
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1. INTRODUCTION
The Bayesian Knowledge Tracing (BKT) model [5] is widely

used in the context of educational data mining [3, 4, 2, 6,
8]. It offers a simple model where student knowledge can be
estimated as the student activity is scored in a structured
online environment such as an intelligent tutoring system.

However, a major problem is that estimating student knowl-
edge is often ambiguous. Known as the “identifiability prob-
lem” [3, 4], this problem means that completely different sets
of model parameters may produce the same student perfor-
mance curve, while estimating quite different knowledge.

Another problem is the “empirical degeneracy” [8] (or the
“model degeneracy”) problem—sometimes the model would
predict low knowledge on high performance or high knowl-
edge on low performance. Contextualizing certain parame-
ters [1] or limiting the ranges of parameters are some adopted
solutions to this problem in the literature.

These two problems are not understood well, and general
solutions to these problems do not exist. Here, combining
mathematical analysis and real data analysis, we show that
these two problems can be dealt with in practice and are
highly correlated. We suggest to use a new parameter (M ;
see Eq. 2 below) as an important detector of these problems
as well as student learning. Our data analysis employs a
new method, which we call the Monte Carlo BKT method.

2. THE BKT MODEL IN THEORY
The BKT model was originally developed by Corbett and

Anderson [5]. This model involves four parameters, each of
them having a numerical value from 0 to 1.

p(L1) This is the initial knowledge that a student has prior
to taking on any learning activities.

p(T ) This is probability that the student will transition



from an unknowing state to a knowing state, as the
result of using the knowledge during a unit of activity.

p(G) This is the “guess parameter” that corresponds to the
probability that the student will choose the correct an-
swer in an activity, while the student has not acquired
the required knowledge.

p(S) This is the “slip parameter” that corresponds to the
probability that the student will choose an incorrect
answer in an activity, while the student has acquired
the required knowledge.

Within the BKT model, these four parameters completely
determine the latent knowledge p(Ln) and the student per-
formance curve p(Cn), where n is the index of the activities
in which the student has opportunities to apply the knowl-
edge. p(Ln) is the knowledge level estimated right before
activity n (or, equivalently, after activity n−1; n = 1, 2, ...),
and p(Cn) is the probability that the student will get the
correct answer on activity n. By fitting the actual student
performance data with p(Cn), we can obtain the estimates of
the above four parameters, from which we can produce the
student knowledge curve p(Ln). As the student goes through
activities, the typical outcome is that p(Ln) increases; how-
ever, the model also allows, in principle, the opposite case
in which p(Ln) decreases as n increases.

2.1 The BKT model without measurement
Here, we envision a purely theoretical process, as originally

considered by Beck and Chang [3, 4]. Imagine a student is
carrying out learning activities, but withholds her/his an-
swers. Therefore, there is no actual measurement of student
learning. However, the student is learning.

p(Cn) is the theoretical student performance curve. If
measurements were made, then we would inevitably find
that the actual performance curve is different from p(Cn)
due to the statistical nature of data.

The advantage of considering the BKT model without
measurement is that such statistical noise can be ignored
and we can use p(Cn) as though it is the actual student per-
formance data. In this case, it can be shown (see the next
section; also, see Ref. [8]) that

p(Ln+1) = p(T ) + (1− p(T )) p(Ln). (1)

This implies a geometric series involving p(Ln), and the se-
ries can be readily summed up, giving the following results
(see the next section for more information on the derivation).

M ≡ (1− p(S)− p(G)) · (1− p(L1)) , (2)

p(Cn) = 1− p(S)−M · (1− p(T ))n−1
, (3)

p(Ln) = 1− (1− p(L1)) (1− p(T ))n−1
. (4)

If we define

nT ≡ −
1

log(1− p(T ))
(5)

then we can rewrite our results for p(Cn) and p(Ln) as

p(Cn) = 1− p(S)−Me
−(n−1)/nT , (6)

p(Ln) = 1− (1− p(L1)) e
−(n−1)/nT . (7)

So, nT tells us how fast or slow p(Cn) and p(Ln) approach
their respective asymptotes, 1 − p(S) and 1. nT is a scale

parameter for the number of activities required in order
for the learning to be perfected.

Our equations clearly explain the origin of the identifiabil-
ity problem. While the theory has four parameters, p(Cn)
depends on only three independent parameters, M , p(T ), and
p(S); this provides the motivation for introducing the new
symbol M . Any two different sets of values for p(G) and
p(L1) that give the same M value will give the same per-
formance curve p(Cn). Worse, there are infinite such sets in
general.

2.2 The BKT model with measurement
In an actual BKT modeling, measurements are made, as

student scores are available. The student score, denoted by
s, may be Boolean (0 or 1) or continuous (0 to 1). Here, we
consider the general case (the latter)

0 ≤ s ≤ 1, student score. (8)

In this case, the posterior probability of the student knowl-
edge, given the evidence of score s, is given by

p(Ln|s) = s · p(Ln|Cn) + (1− s) · p(Ln|In)

=

[

s · (1− p(S))

p(Cn)
+

(1− s)p(S)

1− p(Cn)

]

p(Ln), (9)

where In means incorrect answer at step n. Given this pos-
terior probability and the following two equations [5], p(Ln)
and p(Cn) are determined completely by s values at each n

and four parameters, p(L1), p(T ), p(G), and p(S).

p(Ln+1) = p(Ln|s) + (1− p(Ln|s)) p(T ), (10)

p(Cn) = p(Ln) (1− p(S)) + (1− p(Ln)) p(G). (11)

The case of a continuum value of s has not been discussed in
the literature to our knowledge, and so it is worth noting the
following point. If we restrict the value of s to be Boolean,
0 or 1, then p(Ln|s) becomes either p(Ln|Cn) or p(Ln|In),
and so our model reduces to the more common BKT model
employing Boolean student scores [2, 6]. As a side note, if
we use s = p(Cn), then all results in the previous section
can be derived also.

Is the identifiability problem absent in the BKT model
with measurement?

This question is a very important one. As we will show
in this paper with real data, the answer is no, unless some
other feature of the data places a strong constraint on p(L1)
or p(G).

From a theoretical point of view, also, it seems a bit too
optimistic to conclude [8] that the identifiability problem
does not exist in the BKT model with measurement just
because the model now involves all four parameters in pre-
dicting the student performance. The reason why all four
parameters are involved is only due to the statistical noise
in student score s. It seems sensible to expect then, that,
on average, some identifiability problem persists.

3. THE BKT MODEL IN PRACTICE
The BKT model is an ideal fit to use in a game-like learn-

ing environment, supposing that the following conditions are
met. (1) Each level of activities must challenge students to
learn one specific piece of knowledge. (2) Student must com-
plete at least four activities at each level, thereby producing
at least four score data points for the BKT model involving
four parameters to fit.



3.1 The ramp game
The student score data analyzed in this paper were ob-

tained from the“ramp task module” at the Concord Consor-
tium. This game-like learning module is explained in more
detail in another paper in this issue [7].

In the ramp task, students were asked to determine a
height so that a car could land on a particular target. The
ramp task consisted of five challenges, or five levels, requiring
students to apply more and more sophisticated knowledge
about the ramp system as follows.

Challenge 1: relationship between height and a fixed land-
ing location.

Challenge 2: relationship between height and moving land-
ing locations.

Challenge 3: relationship between height and moving land-
ing locations when a friction value is changed from the
previous challenge.

Challenge 4: relationship between height and moving land-
ing locations when mass of the car is changed.

Challenge 5: relationship between friction and moving land-
ing locations when starting height and mass are fixed.

Each challenge level was comprised of multiple steps: 3
steps for Challenges 1 and 4; 4 steps for Challenges 2 and 3;
6 steps for Challenge 5. Students’ performances were scored
automatically on a 0 to 100 scale based on how close to
the target the car stopped. If students scored 67 points or
higher, they progressed to the next step within that level.
If students finished all required steps within a level, they
moved to the first step of the next Challenge. Student scores
were normalized to a 0 to 1 scale for our analysis.

Therefore, the data from the ramp game module were ide-
ally suited for applying the BKT model analysis to contin-
uous score data.

3.2 Monte Carlo BKT
Given the theoretical ideas discussed in Section 2, how

might one extract BKT fit parameter values from the data?
Clearly, our goal must be obtaining the distributions of fit
parameter values for a given single data set. We achieve this
goal by the following procedure, which we name a Monte
Carlo BKT method, since the goal of the procedure is ob-
taining the probability distribution.

1. The standard Levenberg-Marquardt non-linear least
squares fit algorithm is applied with randomly selected
initial fit parameter values, p(G), p(L1), p(S), and
p(T ).

2. At least 200 successful randomly initialized fits are col-
lected, to ensure good statistics.

3. More fit results are collected, if necessary, until each
parameter value converges within a set (found-to-be-
sufficient) tolerance, 5× 10−4 for this work. If this is
achieved within a preset maximum number of fit trials,
then the program is stopped and success is declared.

We place no restriction on parameter values: any parameter
value can take any value between 0 and 1. After the program
stops successfully, the average fit parameter values can be
taken as representing the given data set, as we did in Ref. [7].

4. RESULTS AND DISCUSSION
Fig. 1 shows the Monte Carlo BKT fit results. Table 1

summarizes simple statistics for the fit parameters, includ-
ing the total number of good fits Ntotal required for the
convergence of the Monte Carlo iteration. Not surprisingly,
data with practically no noise (data sets 1 and 4) converge
very quickly, while others require many more iterations.

4.1 Robustness of p(S)

In all examined cases, p(Ln) steadily increases over time.
We interpret this as the tendency of the theory to follow the
positive eventual outcome scenario.

p(Ln) → 1, for n ≫ nT , (12)

p(Cn) → 1− p(S), for n ≫ nT . (13)

Here, the second equation follows from the first, through
Eq. 11. Also, note that nT is very small (Table 1), and so
these asymptotic behaviors appear already for small n.

The positive eventual outcome is a rigorous mathematical
property of the BKT model without measurement (Eq. 4) as
long as p(T ) > 0. We see that this scenario is also realized
in all our examined cases that involve measurements.

According to Eq. 13, the student score data at large n

values is determined by only one parameter, p(S). There-
fore, the p(S) parameter must be determined without any
ambiguity. Indeed, our p(S) distribution is always sharp.

Since the latent knowledge approaches 1 in the end, should
we say that all students acquired perfect knowledge? Clearly,
this is not the case [7]. It seems that a sensible choice is to
take 1−p(S) as the more practical demonstrable knowledge,
which seems as important as, if not more important than,
the latent knowledge.

4.2 Meaning of M

From Eqs. 2 and 11, we get

p(C1) = 1− p(S)−M. (14)

This describes the initial value of the performance curve. In
practice, there may be noise in the data, and p(C1) must
be assessed with such noise filtered out. Looking at Eqs. 13
and 14, we see that M corresponds to the overall increase
in performance. From Eq. 2, −1 ≤ M ≤ 1.

Thus, M makes it possible to monitor student activities

with one number. IfM is large and positive, say greater than
0.3, then the learning is progressing well. If M is close to
zero, then the learning is stalling. If M is negative, then the
learning is regressing. So, we are able to identify excellent
learning (data sets 1, 6) and poor learning (data sets 5, 7)
just by looking at the M values in Table 1.

4.3 The identifiability problem exists
The identifiability problem is diagnosed if any parameter

distribution is broad. From Fig. 1, this is clearly the case
for data sets 2, 4, and 7. So, the identifiability problem
exists even in the BKT model with measurement.

More quantitatively, the identifiability problem is detected
by large values of σG and σL1

(data sets 2, 5, and 7; and,
to a lesser degree, data sets 3 and 4). We see that in most
of these cases, there is a large negative correlation between
p(G) and p(L1), as shown in the last column of Table 1 and
as expected from Eq. 2 and the discussion in Section 2.

The data that do not show the identifiability problem are
characterized by the narrow distribution of fit parameter
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Figure 1: Monte Carlo samples of BKT parameters, p(G), p(L1), p(S), p(T ), and M . M is a derived “moni-
toring” parameter, defined by Eq. 2. Each data set is labeled as “d<l> c<n>,” which stands for “day <l>
challenge/level <n>.” The overall behaviors of the complete collection of data sets have been discussed in
Ref. [7]; here we focus on seven typical examples for our in-depth analysis. For each data set, we show the
histograms for Monte Carlo samples of fit parameters. Some histograms were scaled up by the shown factors
for clarity. On the rightmost column, data (connected black symbols) are shown with the fit (thick solid red
lines) and the knowledge estimate (gray dashed lines), calculated using the averaged fit parameter values.
The data are plotted as a function of time after session login by student. The sample sizes (Ntotal) that were
required for convergence and other basic statistics are given in Table 1.



Data Ntotal p(G) (σG) p(L1) (σL1
) p(S) (σS) p(T ) (σT ) nT M (σM ) Corr(G,L1)

1 200 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (0.00) 0 1.00 (0.00) -0.61
2 1211 0.69 (0.27) 0.37 (0.35) 0.38 (0.03) 0.68 (0.24) 0.9 -0.09 (0.18) -0.49
3 1564 0.44 (0.13) 0.13 (0.21) 0.10 (0.10) 0.57 (0.25) 1.2 0.40 (0.15) -0.20
4 247 0.78 (0.15) 0.67 (0.19) 0.00 (0.00) 1.00 (0.00) 0 0.05 (0.00) -0.79
5 1217 0.84 (0.24) 0.24 (0.34) 0.39 (0.09) 0.64 (0.21) 1.0 -0.24 (0.19) -0.77
6 1725 0.03 (0.11) 0.04 (0.15) 0.20 (0.09) 0.59 (0.08) 1.1 0.76 (0.14) 0.89
7 1367 0.74 (0.28) 0.37 (0.36) 0.42 (0.07) 0.71 (0.26) 0.8 -0.17 (0.20) -0.66

Table 1: Basic statistics for Monte Carlo BKT fit parameters presented in Fig. 1. Average values are presented
along with standard deviations (σ’s) in parentheses.

values. Data sets 1 and 6 are good examples. Here, p(C1) ≈
0, which means, from Eq. 11, that p(L1) ≈ 0 and p(G) ≈ 0.
This constraint leads to no identifiability problem.

4.4 Empirical degeneracy can be detected
The empirical degeneracy problem can be diagnosed in

the rightmost column of Fig. 1. Data sets 2, 5, and 7 clearly
show this problem, since p(Ln) increases while p(Cn) de-
creases over time. In our work, empirical degeneracy is re-
garded as something that we can detect by analysis, rather
than something that we avoid, e.g., by artificially limiting
the values of p(S) and p(G) to small values. A theoretical
analysis of the BKT inference iteration [8] shows that the
empirical degeneracy condition corresponds to p(S)+p(G) >
1. According to this condition, our data sets 2, 5, and 7 show
empirical degeneracy, in good agreement with our visual di-
agnosis.

We find that M is the detector of empirical degeneracy as
well. M and p(S) + p(G) have an extremely high negative
correlation (r = −0.99), which is not surprising given Eq. 2.
So, empirical degeneracy is detected by a negative value of
M (Table 1). Therefore, empirical degeneracy is a
sign of poor learning (cf., Section 4.2).

Going further, we also find that the empirical degener-
acy problem and the identifiability problem are also
highly correlated. The identifiability problem necessar-
ily leads to large values of σG and σL1

. These values and
the value of M again show a very high negative correlation
(r = −0.93), showing that M can also detect the identifia-
bility problem.

5. CONCLUSIONS
In this paper, we presented data from student online learn-

ing activities and their unbiased analysis using a Monte
Carlo BKT model. The outcome of the analysis shows a
problematic learning can be detected through the low M

parameter value, which in turn indicates the empirical de-
generacy problem and the identifiability problem. The en-
tire numerical procedure that starts from reading the raw
log data from a database and ends with complete Monte
Carlo fits takes about 2 seconds to 20 seconds per data set,
depending on tolerance setting. Therefore, our procedure
is amenable to real time implementation in educational set-
tings.
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